摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,4-di(hydroxymethylene)-3-methylglutaraldehyde

中文名称
——
中文别名
——
英文名称
2,4-di(hydroxymethylene)-3-methylglutaraldehyde
英文别名
2,4-dihydroxymethylene-3-methylglutaraldehyde;2,4-bis(hydroxymethylidene)-3-methylpentanedial
2,4-di(hydroxymethylene)-3-methylglutaraldehyde化学式
CAS
——
化学式
C8H10O4
mdl
——
分子量
170.165
InChiKey
KWRWABGBVNAQEV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.9
  • 重原子数:
    12.0
  • 可旋转键数:
    4.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    74.6
  • 氢给体数:
    2.0
  • 氢受体数:
    4.0

反应信息

  • 作为产物:
    描述:
    丙二醛 、 2-formyl-3-(hexylamino)butanal 在 phosphate buffer 作用下, 以 重水 为溶剂, 反应 24.0h, 生成 正己胺2,4-di(hydroxymethylene)-3-methylglutaraldehyde1-hexyl-4-methyl-1,4-dihydro-3,5-pyridinedicarboxaldehyde
    参考文献:
    名称:
    Elucidation of Reaction Scheme Describing Malondialdehyde−Acetaldehyde−Protein Adduct Formation
    摘要:
    Malondialdehyde and acetaldehyde react together with proteins and form hybrid protein conjugates designated as MAA adducts, which have been detected in livers of ethanol-fed animals. Our previous studies have shown that MAA adducts are comprised of two distinct products. One adduct is composed of two molecules of malondialdehyde and one molecule of acetaldehyde and was identified as the 4-methpl-1,4-dihydropyridine-3,5-dicarbaldehyde derivative of an amino group (MHHDC adduct). The other adduct is a 1:1 adduct of malondialdehyde and acetaldehyde and was identified as the 2-formyl-3-(alkylamino)butanal derivative of an amino group (FAAB adduct). In this study, information on the mechanism of MAA adduct formation was obtained, focusing on whether the FAAB adduct serves as a precursor for the MDHDC adduct. Upon the basis of chemical analysis and NMR spectroscopy, two initial reaction steps appear to be a prerequisite for MDHDC formation. One step involves the reaction of one molecule of malondialdehyde and one of acetaldehyde with an amino group of a protein to form the FAAB product, while the other step involves the generation of a malondialdehyde-enamine. It appears that generation of the MDHDC adduct requires the FAAB moiety to be transferred to the nitrogen of the MDA-enamine. For efficient reaction of FAAB with the enamine to take place, additional experiments indicated that these two intermediates likely must be in positions on the protein of close proximity to each other. Further studies showed that the incubation of liver proteins from ethanol-fed rats with MDA resulted in a marked generation of MDHDC adducts, indicating the presence of a pool of FAAB adducts in the liver of ethanol-fed animals. Overall, these findings show that MDHDC-protein adduct formation occurs via the reaction of the FAAB moiety with a malondialdehyde-enamine, and further suggest that a similar mechanism may be operative in vivo in the liver during prolonged ethanol consumption.
    DOI:
    10.1021/tx000222a
点击查看最新优质反应信息

文献信息

  • Elucidation of Reaction Scheme Describing Malondialdehyde−Acetaldehyde−Protein Adduct Formation
    作者:Dean J. Tuma、Mark L. Kearley、Geoffrey M. Thiele、Simon Worrall、Alvin Haver、Lynell W. Klassen、Michael F. Sorrell
    DOI:10.1021/tx000222a
    日期:2001.7.1
    Malondialdehyde and acetaldehyde react together with proteins and form hybrid protein conjugates designated as MAA adducts, which have been detected in livers of ethanol-fed animals. Our previous studies have shown that MAA adducts are comprised of two distinct products. One adduct is composed of two molecules of malondialdehyde and one molecule of acetaldehyde and was identified as the 4-methpl-1,4-dihydropyridine-3,5-dicarbaldehyde derivative of an amino group (MHHDC adduct). The other adduct is a 1:1 adduct of malondialdehyde and acetaldehyde and was identified as the 2-formyl-3-(alkylamino)butanal derivative of an amino group (FAAB adduct). In this study, information on the mechanism of MAA adduct formation was obtained, focusing on whether the FAAB adduct serves as a precursor for the MDHDC adduct. Upon the basis of chemical analysis and NMR spectroscopy, two initial reaction steps appear to be a prerequisite for MDHDC formation. One step involves the reaction of one molecule of malondialdehyde and one of acetaldehyde with an amino group of a protein to form the FAAB product, while the other step involves the generation of a malondialdehyde-enamine. It appears that generation of the MDHDC adduct requires the FAAB moiety to be transferred to the nitrogen of the MDA-enamine. For efficient reaction of FAAB with the enamine to take place, additional experiments indicated that these two intermediates likely must be in positions on the protein of close proximity to each other. Further studies showed that the incubation of liver proteins from ethanol-fed rats with MDA resulted in a marked generation of MDHDC adducts, indicating the presence of a pool of FAAB adducts in the liver of ethanol-fed animals. Overall, these findings show that MDHDC-protein adduct formation occurs via the reaction of the FAAB moiety with a malondialdehyde-enamine, and further suggest that a similar mechanism may be operative in vivo in the liver during prolonged ethanol consumption.
查看更多