Side-chain engineering has been considered as one of the most promising strategies to optimize non-fullerene acceptors. In this work, we use side-chain engineering to synthesize three fully non-fused electron acceptors (FNEAs) i.e. two symmetric acceptors (4T-BE and 4T-TO) and one asymmetric acceptor (4T-BOE) by different side chain combination onto the tetrathiophene unit, which could effectively tune
侧链工程被认为是优化非
富勒烯受体最有前途的策略之一。在这项工作中,我们使用侧链工程通过不同的侧链组合合成了三种完全非稠合电子受体(FNEA),即两种对称受体( 4T-BE和4T-TO)和一种不对称受体(4T-BOE )。四
噻吩单元,可以有效调节分子构象、电子性能、载流子传输、薄膜形貌和光伏性能。从4T-BE到4T-BOE和4T-TO,分子呈现出更多的红移吸收、更小的光学带隙、最初上升然后下降的 LUMO 能级以及更强的分子间堆积。当与聚合物供体
PBDB-T 混合时,具有烷氧基和酯侧链的不对称4T-BOE表现出 9.57% 的冠军 PCE,短路电流密度 ( J sc ) 为 16.28 mA/cm 2,开路电压 ( V oc)为0.87 V,填充因子(FF)为67.50%,高于基于
PBDB-T: 4T-BE和
PBDB-T: 4T-TO的器件。这些结果表明,不对称侧链工程对于设计高效 FNEA