HHQ-4, a quinoline derivate, preferentially inhibits proliferation of glucose-deprived breast cancer cells as a GRP78 down-regulator
作者:Xiao Xiao、Shuo Li、Xiaoxun Zhang、Jinjian Lu、Weiguang Wang、Shijia Zhou、Jingyao Zhang、Rui Wang、Ao Li
DOI:10.1016/j.taap.2019.04.017
日期:2019.6
As a central regulator for endoplasmic reticulum (ER) stress, glucose-regulated protein 78 (GRP78), controls the activation of ER-transmembrane signaling mechanisms by inducing unfolded protein response (UPR) in response to ER stress. Although limited glucose availability often occurs in poorly vascularized solid cancers, cancer cells often initiate the UPR to support cellular homeostasis and survival under stress conditions. Therefore, targeting GRP78 expression and UPR pathway activation may provide a new strategy for anticancer therapy. Based on this premise, we investigated the molecular mechanisms of a synthetic quinolone derivative, 2-hexyl-3-methyl-4(1H)-quinolinone (HHQ-4), in regulating the GRP78 expression and UPR transcriptional program under glucose deprivation or 2-deoxy-D-glucose (2-DG)-stressed conditions. We found that HHQ-4 suppressed the transcriptional and translational expression of GRP78 gene in glucose-deprived breast cancer cells. HHQ-4 also showed selective antiproliferative activity against glucose-deprived breast cancer cells. Constitutive expression of GRP78 completely prevented breast cancer cells from HHQ-4-mediated proliferation inhibition during glucose starvation, stressing the important role of suppression of the GRP78 in HHQ-4-mediated cell proliferation inhibition. HHQ-4 was also found to exert inhibitory activity against breast cancer cell proliferation by suppressing three survival arms of the UPR, including PERK/eIF2 alpha/ATF4, IRE1/XBP1, and ATF6, which orchestrate an intricate signaling network to modulate GRP78 gene transcription under glucose-deprived stress. Furthermore, HHQ-4 combined with 2-DG synergistically inhibited breast cancer cell proliferation. Our findings show HHQ-4 could be a promising candidate, alone or in combination with 2-DG, for selectively inhibiting breast cancer cell proliferation by down-regulating the transcription and expression of GRP78 under stressful microenvironments.