A Novel Cell-Permeable, Selective, and Noncompetitive Inhibitor of KAT3 Histone Acetyltransferases from a Combined Molecular Pruning/Classical Isosterism Approach
摘要:
Selective inhibitors of the two paralogue KAT3 acetyltransferases (CBP and p300) may serve not only as precious chemical tools to investigate the role of these enzymes in physiopathological mechanisms but also as lead structures for the development of further antitumor agents. After the application of a molecular pruning approach to the hardly optimizable and not very cell-permeable garcinol core structure, we prepared many analogues that were screened for their inhibitory effects using biochemical and biophysical (SPR) assays. Further optimization led to the discovery of the benzylidenebarbituric acid derivative 7h (EML425) as a potent and selective reversible inhibitor of CBP/p300, noncompetitive versus both acetyl-CoA and a histone H3 peptide, and endowed with good cell permeability. Furthermore, in human leukemia U937 cells, it induced a marked and time-dependent reduction in the acetylation of lysine H4K5 and H3K9, a marked arrest in the G0/G1 phase and a significant increase in the hypodiploid nuclei percentage.
A Novel Cell-Permeable, Selective, and Noncompetitive Inhibitor of KAT3 Histone Acetyltransferases from a Combined Molecular Pruning/Classical Isosterism Approach
摘要:
Selective inhibitors of the two paralogue KAT3 acetyltransferases (CBP and p300) may serve not only as precious chemical tools to investigate the role of these enzymes in physiopathological mechanisms but also as lead structures for the development of further antitumor agents. After the application of a molecular pruning approach to the hardly optimizable and not very cell-permeable garcinol core structure, we prepared many analogues that were screened for their inhibitory effects using biochemical and biophysical (SPR) assays. Further optimization led to the discovery of the benzylidenebarbituric acid derivative 7h (EML425) as a potent and selective reversible inhibitor of CBP/p300, noncompetitive versus both acetyl-CoA and a histone H3 peptide, and endowed with good cell permeability. Furthermore, in human leukemia U937 cells, it induced a marked and time-dependent reduction in the acetylation of lysine H4K5 and H3K9, a marked arrest in the G0/G1 phase and a significant increase in the hypodiploid nuclei percentage.
PYRIMIDINE-2,4,6-TRIONES FOR USE IN THE TREATMENT OF AMYOTROPHIC LATERAL SCLEROSIS
申请人:Kirsch Donald R.
公开号:US20120046309A1
公开(公告)日:2012-02-23
The present invention relates to the identification of inventive pyrimidine-2,4,6-triones (PYT compounds) and pharmaceutical compositions thereof for treating subjects with amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. The invention also provides methods of preparing the inventive PYT compounds.
US9499494B2
申请人:——
公开号:US9499494B2
公开(公告)日:2016-11-22
A Novel Cell-Permeable, Selective, and Noncompetitive Inhibitor of KAT3 Histone Acetyltransferases from a Combined Molecular Pruning/Classical Isosterism Approach
Selective inhibitors of the two paralogue KAT3 acetyltransferases (CBP and p300) may serve not only as precious chemical tools to investigate the role of these enzymes in physiopathological mechanisms but also as lead structures for the development of further antitumor agents. After the application of a molecular pruning approach to the hardly optimizable and not very cell-permeable garcinol core structure, we prepared many analogues that were screened for their inhibitory effects using biochemical and biophysical (SPR) assays. Further optimization led to the discovery of the benzylidenebarbituric acid derivative 7h (EML425) as a potent and selective reversible inhibitor of CBP/p300, noncompetitive versus both acetyl-CoA and a histone H3 peptide, and endowed with good cell permeability. Furthermore, in human leukemia U937 cells, it induced a marked and time-dependent reduction in the acetylation of lysine H4K5 and H3K9, a marked arrest in the G0/G1 phase and a significant increase in the hypodiploid nuclei percentage.