Diaryl Dihydropyrazole-3-carboxamides with Significant In Vivo Antiobesity Activity Related to CB1 Receptor Antagonism: Synthesis, Biological Evaluation, and Molecular Modeling in the Homology Model
摘要:
A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compounds-the bisulfate salt,of (+/-)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (-)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole3-carboxylic acid morpholin-4-ylamide 30-showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (+/-)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)4,5-dihydro- 1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB I receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxarnide (rimonabant) 1 and 4S-(-)-3-(4-chlorophenyl)-N-methyl-N'-[(4-chlorophenyl)-sulfonyl]-4-pheny1-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2.
CuBr-Promoted Formal Hydroacylation of 1-Alkynes with Glyoxal Derivatives: An Unexpected Synthesis of 1,2-Dicarbonyl-3-enes
摘要:
An efficient and concise protocol has been developed for the highly regio- and stereoselective synthesis of E-1,2-dicarbonyl-3-ene derivatives by a copper-promoted reaction of 1-alkynes with a-carbonyl aldehydes in the presence of morpholine. The products obtained are believed as the formal hydroacylation of the triple bond.
CuBr-Promoted Formal Hydroacylation of 1-Alkynes with Glyoxal Derivatives: An Unexpected Synthesis of 1,2-Dicarbonyl-3-enes
作者:Shufeng Chen、Xiaojie Li、Haiying Zhao、Baoguo Li
DOI:10.1021/jo500199v
日期:2014.5.2
An efficient and concise protocol has been developed for the highly regio- and stereoselective synthesis of E-1,2-dicarbonyl-3-ene derivatives by a copper-promoted reaction of 1-alkynes with a-carbonyl aldehydes in the presence of morpholine. The products obtained are believed as the formal hydroacylation of the triple bond.
Diaryl Dihydropyrazole-3-carboxamides with Significant In Vivo Antiobesity Activity Related to CB1 Receptor Antagonism: Synthesis, Biological Evaluation, and Molecular Modeling in the Homology Model
作者:Brijesh Kumar Srivastava,*、Amit Joharapurkar、Saurin Raval、Jayendra Z. Patel、Rina Soni、Preeti Raval、Archana Gite、Amitgiri Goswami、Nisha Sadhwani、Neha Gandhi、Harilal Patel、Bhupendra Mishra、Manish Solanki、Bipin Pandey、Mukul R. Jain、Pankaj R. Patel
DOI:10.1021/jm061490u
日期:2007.11.1
A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compounds-the bisulfate salt,of (+/-)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (-)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole3-carboxylic acid morpholin-4-ylamide 30-showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (+/-)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)4,5-dihydro- 1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB I receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxarnide (rimonabant) 1 and 4S-(-)-3-(4-chlorophenyl)-N-methyl-N'-[(4-chlorophenyl)-sulfonyl]-4-pheny1-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2.