摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2S,3S,4S,5S,6R)-6-((R)-1,2-dihydroxyethyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl dihydrogen phosphate

中文名称
——
中文别名
——
英文名称
(2S,3S,4S,5S,6R)-6-((R)-1,2-dihydroxyethyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl dihydrogen phosphate
英文别名
D-glycero-D-manno-heptopyranose 1β-phosphate;D-glycero-D-manno-heptose 1β-phosphate;D-glycero-β-D-manno-heptose phosphate;D-glycero-D-mannoheptose-1β-P;[(2S,3S,4S,5S,6R)-6-[(1R)-1,2-dihydroxyethyl]-3,4,5-trihydroxyoxan-2-yl] dihydrogen phosphate
(2S,3S,4S,5S,6R)-6-((R)-1,2-dihydroxyethyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl dihydrogen phosphate化学式
CAS
——
化学式
C7H15O10P
mdl
——
分子量
290.164
InChiKey
KMEJCSKJXSBBAN-QTNLNCNHSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -4.3
  • 重原子数:
    18
  • 可旋转键数:
    4
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    177
  • 氢给体数:
    7
  • 氢受体数:
    10

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    adenosine 5'-triphosphate disodium salt 、 (2S,3S,4S,5S,6R)-6-((R)-1,2-dihydroxyethyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl dihydrogen phosphate 在 recombinant B. bronchiseptica D-glycero-D-manno-heptose-1β-phosphate adenylyltransferase 、 magnesium chloride 作用下, 反应 1.0h, 以20 mg的产率得到adenosine 5′-diphosphate-d-glycero-β-d-manno-heptopyranose
    参考文献:
    名称:
    Divergence of Biochemical Function in the HAD Superfamily: d-glycero-d-manno-Heptose-1,7-bisphosphate Phosphatase (GmhB)
    摘要:
    D-glycero-D-manno-Heptose-1,7-bisphosphate phosphatase (GmhB) is a member of the histidinol-phosphate phosphatase (HisB) subfamily of the haloalkanoic acid dehalogenase (HAD) enzyme superfamily. GmhB supports two divergent biochemical pathways in bacteria: the D-glycero-D-manno-heptose-1 alpha-GDP pathway (in S-layer glycoprotein biosynthesis) and the L-glycero-D-manno-heptose-1 beta-ADP pathway (in lipid A biosynthesis). Herein, we report the comparative analysis Of Substrate recognition in selected GmhB orthologs. The substrate specificity of the L-glycero-D-manno-heptose-1 beta-ADP pathway GmhB from Escherichia coli K-12 was evaluated using hexose and heptose bisphosphates, histidinol phosphate, and common organophosphate metabolites. Only D-glycero-D-manno-heptose 1 beta,7-bisphosphate (k(cat)/k(m) = 7 x 10(6) M-1 s(-1)) and D-glycero-D-manno-heptose 1 alpha,7-bisphosphate (k(cat)/K-m, = 7 x 10(4) M-1 s(-1)) displayed physiologically significant Substrate activity. P-31 NMR analysis demonstrated that E. coli GmhB selectively removes the C(7) phosphate. Steady-state kinetic inhibition studies showed that D-glycero-D-manno-heptose 1 beta-phosphate (K-is = 60 mu M, and K-ii = 150 mu M) and histidinol phosphate (K-is = 1 mM, and K-ii = 6 mM), while not hydrolyzed, do in fact bind to E. coli GmhB, which leads to the conclusion that nonproductive binding contributes to substrate discrimination. High catalytic efficiency and a narrow substrate range are characteristic of a well-evolved metabolic enzyme, and as such, E. coli GmhB is set apart from most HAD phosphatases (which are typically inefficient and promiscuous). The specialization of the biochemical function of GmhB was examined by measuring the kinetic constants for hydrolysis of the alpha- and beta-anomers of D-glycero-D-manno-heptose 1 beta,7-bisphosphate catalyzed by the GmhB orthologs of the L-glycero-D-manno- 1 beta-ADP pathways operative in Bordetella bronchiseptica and Mesorhizobium and by the GmhB of the D-glycero-D-manno-heptose 1 alpha-GDP pathway operative in Bacteroides thetaiotaomicron. The results show that although each of these representatives possesses physiologically significant catalytic activity toward both anomers, each displays substantial anomeric specificity. Like E. coli GmhB, B. bronchiseptica GmhB and M. loti GmhB prefer the beta-anomer, whereas B. thetaiotaomicron GmhB is selective for the alpha-anomer. By determining the anomeric configuration of the physiological Substrate (D-glycero-D-manno-heptose 1,7- for each of the four GmhB orthologs, we discovered that the anomeric specificity of GmhB correlates with that of the pathway kinase. The conclusion drawn from this finding is that the evolution of the ancestor to GmhB in the HisB subfamily provided for specialization toward two distinct biochemical functions.
    DOI:
    10.1021/bi902018y
  • 作为产物:
    描述:
    D-glycero-D-manno-heptopyranose 1β,7-bisphosphate 在 Escherichia coli D-glycero-D-manno-heptose 1β,7-bisphosphate phosphatase C109A mutant 、 、 magnesium chloride 作用下, 生成 (2S,3S,4S,5S,6R)-6-((R)-1,2-dihydroxyethyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl dihydrogen phosphate
    参考文献:
    名称:
    Structural Determinants of Substrate Recognition in the HAD Superfamily Member d-glycero-d-manno-Heptose-1,7-bisphosphate Phosphatase (GmhB),
    摘要:
    The haloalkanoic acid dehalogenase (HAD) enzyme superfamily is the largest family of phosphohydrolases. In HAD members, the structural elements that provide the binding interactions that support substrate specificity are separated from those that orchestrate catalysis. For most HAD phosphatases, a cap domain functions in substrate recognition. However, for the HAD phosphatases that lack a cap domain, an alternate strategy for substrate selection must be operative. One such HAD phosphatase, GmhB of the HisB Subfamily, was selected for structure-function. analysis. Herein, the X-ray crystallographic structures of Escherichia coli GmhB in the apo form (1.6 angstrom resolution), in a complex with Mg2+ and orthophosphate (1.8 angstrom resolution), and in a complex with Mg2+ and D-glycero-D-manno-heptose 1 beta,7-bisphosphate (2.2 angstrom resolution) were determined, in addition to the Structure of Bordetella bronchiseptica GmhB bound to Mg2+ and orthophosphate (1.7 angstrom resolution). The Structures show that in place of a cap domain, the GmhB catalytic site is elaborated by three peptide inserts or loops that pack to form a concave, semicircular surface around the substrate leaving group. Structure-guided kinetic analysis of site-directed mutants was conducted in parallel with a bioinformatics study of sequence diversification within (lie HisB subfamily to identify loop residues that serve as substrate recognition elements and that distinguish GmhB from its subfamily counterpart, the histidinol-phosphate phosphatase domain of HisB. We show that GmhB and the histidinol-phosphate phosphatase domain use the same design of three Substrate recognition loops inserted into the cap domain yet, through selective residue usage on the loops, have achieved unique substrate specificity and thus novel biochemical function.
    DOI:
    10.1021/bi902019q
点击查看最新优质反应信息

文献信息

  • Compositions and methods of modulating the immune response by activating alpha protein kinase 1
    申请人:Shanghai Yao Yuan Biotechnology Co., Ltd.
    公开号:US11186606B2
    公开(公告)日:2021-11-30
    The disclosure provides compositions and methods related to activating alpha-kinase 1 (ALPK1) for modulating an immune response and treating or preventing cancer, infection, inflammation and related diseases and disorders as well as potentiating an immune response to a target antigen. The disclosure also provides heterocyclic compounds of formula (I) as agonists of alpha protein kinase 1 (ALPK1) and their use in activating ALPK1, modulating an immune response and treating diseases such as cancer, wherein A1, A2, L1, L2, L3, Z1, Z2, W1, W2, R1, R2, R3, R4, R5, R6 and R7 are defined herein.
    本公开提供了与激活α蛋白激酶1(ALPK1)有关的组合物和方法,用于调节免疫反应和治疗或预防癌症、感染、炎症及相关疾病和失调,以及增强对靶抗原的免疫反应。本公开还提供了作为α蛋白激酶1(ALPK1)激动剂的式(I)杂环化合物及其在激活ALPK1、调节免疫应答和治疗癌症等疾病中的用途,其中A1、A2、L1、L2、L3、Z1、Z2、W1、W2、R1、R2、R3、R4、R5、R6和R7在本文中定义。
  • COMPOSITIONS AND METHODS OF MODULATING THE IMMUNE RESPONSE BY ACTIVATING ALPHA PROTEIN KINASE 1
    申请人:Shanghai Yao Yuan Biotechnology Co., Ltd.
    公开号:US20200283468A1
    公开(公告)日:2020-09-10
    The disclosure provides compositions and methods related to activating alpha-kinase 1 (ALPK1) for modulating an immune response and treating or preventing cancer, infection, inflammation and related diseases and disorders as well as potentiating an immune response to a target antigen. The disclosure also provides heterocyclic compounds of formula (I) as agonists of alpha protein kinase 1 (ALPK1) and their use in activating ALPK1, modulating an immune response and treating diseases such as cancer, wherein A 1 , A 2 , L 1 , L 2 , L 3 , Z 1 , Z 2 , W 1 , W 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are defined herein.
  • Divergence of Biochemical Function in the HAD Superfamily: <scp>d</scp>-<i>glycero</i>-<scp>d</scp><i>-manno-</i>Heptose-1,7-bisphosphate Phosphatase (GmhB)
    作者:Liangbing Wang、Hua Huang、Henry H. Nguyen、Karen N. Allen、Patrick S. Mariano、Debra Dunaway-Mariano
    DOI:10.1021/bi902018y
    日期:2010.2.16
    D-glycero-D-manno-Heptose-1,7-bisphosphate phosphatase (GmhB) is a member of the histidinol-phosphate phosphatase (HisB) subfamily of the haloalkanoic acid dehalogenase (HAD) enzyme superfamily. GmhB supports two divergent biochemical pathways in bacteria: the D-glycero-D-manno-heptose-1 alpha-GDP pathway (in S-layer glycoprotein biosynthesis) and the L-glycero-D-manno-heptose-1 beta-ADP pathway (in lipid A biosynthesis). Herein, we report the comparative analysis Of Substrate recognition in selected GmhB orthologs. The substrate specificity of the L-glycero-D-manno-heptose-1 beta-ADP pathway GmhB from Escherichia coli K-12 was evaluated using hexose and heptose bisphosphates, histidinol phosphate, and common organophosphate metabolites. Only D-glycero-D-manno-heptose 1 beta,7-bisphosphate (k(cat)/k(m) = 7 x 10(6) M-1 s(-1)) and D-glycero-D-manno-heptose 1 alpha,7-bisphosphate (k(cat)/K-m, = 7 x 10(4) M-1 s(-1)) displayed physiologically significant Substrate activity. P-31 NMR analysis demonstrated that E. coli GmhB selectively removes the C(7) phosphate. Steady-state kinetic inhibition studies showed that D-glycero-D-manno-heptose 1 beta-phosphate (K-is = 60 mu M, and K-ii = 150 mu M) and histidinol phosphate (K-is = 1 mM, and K-ii = 6 mM), while not hydrolyzed, do in fact bind to E. coli GmhB, which leads to the conclusion that nonproductive binding contributes to substrate discrimination. High catalytic efficiency and a narrow substrate range are characteristic of a well-evolved metabolic enzyme, and as such, E. coli GmhB is set apart from most HAD phosphatases (which are typically inefficient and promiscuous). The specialization of the biochemical function of GmhB was examined by measuring the kinetic constants for hydrolysis of the alpha- and beta-anomers of D-glycero-D-manno-heptose 1 beta,7-bisphosphate catalyzed by the GmhB orthologs of the L-glycero-D-manno- 1 beta-ADP pathways operative in Bordetella bronchiseptica and Mesorhizobium and by the GmhB of the D-glycero-D-manno-heptose 1 alpha-GDP pathway operative in Bacteroides thetaiotaomicron. The results show that although each of these representatives possesses physiologically significant catalytic activity toward both anomers, each displays substantial anomeric specificity. Like E. coli GmhB, B. bronchiseptica GmhB and M. loti GmhB prefer the beta-anomer, whereas B. thetaiotaomicron GmhB is selective for the alpha-anomer. By determining the anomeric configuration of the physiological Substrate (D-glycero-D-manno-heptose 1,7- for each of the four GmhB orthologs, we discovered that the anomeric specificity of GmhB correlates with that of the pathway kinase. The conclusion drawn from this finding is that the evolution of the ancestor to GmhB in the HisB subfamily provided for specialization toward two distinct biochemical functions.
  • Structural Determinants of Substrate Recognition in the HAD Superfamily Member <scp>d</scp>-<i>glycero</i>-<scp>d</scp>-<i>manno</i>-Heptose-1,7-bisphosphate Phosphatase (GmhB),
    作者:Henry H. Nguyen、Liangbing Wang、Hua Huang、Ezra Peisach、Debra Dunaway-Mariano、Karen N. Allen
    DOI:10.1021/bi902019q
    日期:2010.2.16
    The haloalkanoic acid dehalogenase (HAD) enzyme superfamily is the largest family of phosphohydrolases. In HAD members, the structural elements that provide the binding interactions that support substrate specificity are separated from those that orchestrate catalysis. For most HAD phosphatases, a cap domain functions in substrate recognition. However, for the HAD phosphatases that lack a cap domain, an alternate strategy for substrate selection must be operative. One such HAD phosphatase, GmhB of the HisB Subfamily, was selected for structure-function. analysis. Herein, the X-ray crystallographic structures of Escherichia coli GmhB in the apo form (1.6 angstrom resolution), in a complex with Mg2+ and orthophosphate (1.8 angstrom resolution), and in a complex with Mg2+ and D-glycero-D-manno-heptose 1 beta,7-bisphosphate (2.2 angstrom resolution) were determined, in addition to the Structure of Bordetella bronchiseptica GmhB bound to Mg2+ and orthophosphate (1.7 angstrom resolution). The Structures show that in place of a cap domain, the GmhB catalytic site is elaborated by three peptide inserts or loops that pack to form a concave, semicircular surface around the substrate leaving group. Structure-guided kinetic analysis of site-directed mutants was conducted in parallel with a bioinformatics study of sequence diversification within (lie HisB subfamily to identify loop residues that serve as substrate recognition elements and that distinguish GmhB from its subfamily counterpart, the histidinol-phosphate phosphatase domain of HisB. We show that GmhB and the histidinol-phosphate phosphatase domain use the same design of three Substrate recognition loops inserted into the cap domain yet, through selective residue usage on the loops, have achieved unique substrate specificity and thus novel biochemical function.
查看更多