Photoinduced Electron-Transfer-Based Hybridization Probes for Detection of DNA and RNA
摘要:
Here, we report the synthesis of a hybridization probe for detection of RNA and DNA based on photoinduced electron transfer (PeT). We designed and synthesized an oligonucleotide containing an adenosine analogue with a 9-(N,N-dimethylaminomethyl)anthracenyl moiety at its 6-position via an ethynylene linker as the hybridization probe. When the probe was hybridized with a complementary RNA or DNA, the fluorescence intensity increased 3-fold or 4.5-fold, respectively, compared to the single-stranded state.
Photoinduced Electron-Transfer-Based Hybridization Probes for Detection of DNA and RNA
摘要:
Here, we report the synthesis of a hybridization probe for detection of RNA and DNA based on photoinduced electron transfer (PeT). We designed and synthesized an oligonucleotide containing an adenosine analogue with a 9-(N,N-dimethylaminomethyl)anthracenyl moiety at its 6-position via an ethynylene linker as the hybridization probe. When the probe was hybridized with a complementary RNA or DNA, the fluorescence intensity increased 3-fold or 4.5-fold, respectively, compared to the single-stranded state.
Here, we report the synthesis of a hybridization probe for detection of RNA and DNA based on photoinduced electron transfer (PeT). We designed and synthesized an oligonucleotide containing an adenosine analogue with a 9-(N,N-dimethylaminomethyl)anthracenyl moiety at its 6-position via an ethynylene linker as the hybridization probe. When the probe was hybridized with a complementary RNA or DNA, the fluorescence intensity increased 3-fold or 4.5-fold, respectively, compared to the single-stranded state.