The purpose of this study was to investigate the effects of antazoline and ketotifen (two H1 receptor antagonists) on the anticonvulsant activity of antiepileptic drugs against maximal electroshock (MES)-induced convulsions in mice. The following antiepileptic drugs were used: valproate, carbamazepine, diphenylhydantoin and phenobarbital. In addition, the effects of antiepileptic drugs alone or in combination with antazoline or ketotifen were studied on long-term memory (tested in the passive avoidance task) and motor performance (evaluated in the chimney test), acutely and after 7-day treatment with these H1 receptor antagonists. The influence of antazoline and ketotifen on the free plasma and brain levels of the antiepileptics was also evaluated. Antazoline (at 0.5 mg/kg), given acutely and after 7-day treatment, significantly diminished the electroconvulsive threshold. Similarly, ketotifen, after acute and chronic doses of 8 mg/kg markedly reduced the threshold for electroconvulsions. In both cases, antazoline and ketotifen were without effect upon this parameter at lower doses. Antazoline (0.25 mg/kg) significantly raised the ED50 value of carbamazepine against MES (both, acutely and after 7-day treatment). Furthermore antazoline (0.25 mg/kg) also reduced the anticonvulsant activity of diphenylhydantoin, but only after repeated administration, without modifying the brain and free plasma level of this drug. Moreover, valproate and phenobarbital did not change their protective activity when combined with antazoline. ... Only acute antazoline (0.25 mg/kg) applied with valproate impaired the performance of mice evaluated in the chimney test. Ketotifen (4 mg/kg) co-administered with conventional antiepileptic drugs impaired motor coordination in mice treated with valproate, phenobarbital or diphenylhydantoin. Acute and chronic antazoline (0.25 mg/kg) alone or in combination with antiepileptic drugs did not disturb long-term memory, tested in the passive avoidance task. ... The results of this study indicate that H1 receptor antagonists, crossing the blood brain barrier, should be used with caution in epileptic patients. This is because antazoline reduced the protective potential of diphenylhydantoin and carbamazepine.
Imidazoline drugs exert neuroprotective effects in cerebral ischaemia models. They also have effects against mouse cerebellar and striatal neuronal death induced by N-methyl-D-aspartate (NMDA) through the blockade of NMDA currents. Here, we investigated the effects of antazoline on NMDA toxicity and current in rat hippocampal neuronal cultures, and on an in vivo model of status epilepticus. In hippocampal cultures, antazoline (30 uM) decreased NMDA-mediated neurotoxicity and also blocked the NMDA current with voltage-dependent and fast-reversible action (inhibition by 85+ or - 3% at -60 mV). Status epilepticus was induced by injecting pilocarpine (200 nmol) directly into the right pyriform cortex of male adult rats. The rats then received immediately three consecutive i.p. injections at 30-min intervals of either PBS (control group) or antazoline at 10 mg/kg (low-dose group) or at 45 mg/kg (high-dose group). During the 6-hr recording, status epilepticus lasted more than 200 min in all groups. In the high-dose group only, seizures completely ceased 1 hr after the third injection of antazoline, then started again 1 hr later. Rats were killed 1 week later, and Cresyl Violet-stained sections of their brain were analysed for damage quantification. On the ipsilateral side to the pilocarpine injection, pyriform cortex and hippocampal CA1 and CA3 areas were significantly protected in both antazoline-treated groups, whilst prepyriform and entorhinal cortices were only in the high-dose group. On the contralateral side to the pilocarpine injection, only the hippocampal CA3 area was significantly protected in the low-dose group, but all investigated structures were in the high-dose group.In conclusion, antazoline is a potent neuroprotective drug in different models of neuronal primary culture, as previously shown in striatal and cerebellar granule neurons, and here in hippocampal neurons. Antazoline is also neuroprotective in vivo in the intra-pyriform pilocarpine-induced status epilepticus model.
Most patients require only symptomatic and supportive care. Treatment is focused on controlling agitation, maintaining airway, reversing hyperthermia, and supporting hemodynamic function. Gastrointestinal decontamination is not essential, but if not more than 1 hours has elapsed since ingestion of the drug, activated charcoal may be considered. In view of the potential cardiac toxicity in addition to maintenance of the airway, breathing, and circulatory status of the patients, observation for dysrhythmia is warranted. Clinical assessment for signs that may indicated impending seizure activity (hypertonicity, hyperreflexia, or myoclonic jerking) is important. ... /Antihistamines/
Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if needed. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 ml/kg up to 200 ml of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool ... . Cover skin burns with dry sterile dressings after decontamination ... . /Poisons A and B/
Advanced treatment: Consider orotracheal or nasotracheal intubation for airway control in the patient who is unconscious, has severe pulmonary edema, or is in severe respiratory distress. Positive-pressure ventilation techniques with a bag valve mask device may be beneficial. Consider drug therapy for pulmonary edema ... . Consider administering a beta agonist such as albuterol for severe bronchospasm ... . Monitor cardiac rhythm and treat arrhythmias as necessary ... . Start IV administration of D5W /SRP: "To keep open", minimal flow rate/. Use 0.9% saline (NS) or lactated Ringer's if signs of hypovolemia are present. For hypotension with signs of hypovolemia, administer fluid cautiously. Watch for signs of fluid overload ... . Treat seizures with diazepam or lorazepam ... . Use proparacaine hydrochloride to assist eye irrigation ... . /Poisons A and B/
The Preparation and Characterization of New Antazoline Salts with Dicarboxylic Acids
摘要:
New antazoline salts with organic acids (fumaric acid, oxalic acid, and maleic acid) were prepared. The effect of the crystallization solvent and mechanochemical treatment on the crystalline forms of these salts was studied. Two polymorphs of antazoline hydrogen maleate were identified and their relative stability was determined. The molecular structures of antazoline hydrogen oxalate and antazoline hydrogen maleate showed differences in antazoline cation conformation. In crystal structures of all salts both imidazoline nitrogens of antazoline cation are involved in hydrogen bond formation with carboxyl groups of the acid.
The present invention relates compounds of the formula: or pharmaceutically acceptable salts thereof, useful as sodium channel blockers, as well as compositions containing the same, processes for the preparation of the same, and therapeutic methods of use therefore in promoting hydration of mucosal surfaces and the treatment of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, bronchiectasis, acute and chronic bronchitis, emphysema, and pneumonia.
CHLORO-PYRAZINE CARBOXAMIDE DERIVATIVES WITH EPITHELIAL SODIUM CHANNEL BLOCKING ACTIVITY
申请人:Parion Sciences, Inc.
公开号:US20140171447A1
公开(公告)日:2014-06-19
This invention provides compounds of the formula I:
and their pharmaceutically acceptable salts, useful as sodium channel blockers, compositions containing the same, therapeutic methods and uses for the same and processes for preparing the same.
3-Aminocyclopentanecarboxamides as modulators of chemokine receptors
申请人:Xue Chu-Biao
公开号:US20060004018A1
公开(公告)日:2006-01-05
The present invention is directed to compounds of Formula I:
which are modulators of chemokine receptors. The compounds of the invention, and compositions thereof, are useful in the treatment of diseases related to chemokine receptor expression and/or activity.
The present invention is directed to cyclopropylamine derivatives which are LSD1 inhibitors useful in the treatment of diseases such as cancer.
本发明涉及环丙胺衍生物,这些衍生物是LSD1抑制剂,可用于治疗癌症等疾病。
Benzoxazinyl-amidocyclopentyl-heterocyclic modulators of chemokine receptors
申请人:Goble D. Stephen
公开号:US20070238723A1
公开(公告)日:2007-10-11
Cyclopentyl compounds linked to a benzoxazinyl group through an amido moiety utilizing the ring nitrogen of the benzoxazine, and further substituted with a heterocyclic moiety, such compounds represented by formula I:
which are used to modulate the CCR-2 chemokine receptor to prevent or treat inflammatory and immunoregulatory disorders and diseases, allergic diseases, atopic conditions including allergic rhinitis, dermatitis, conjunctivitis, and asthma, as well as autoimmune pathologies such as rheumatoid arthritis and atherosclerosis; and pharmaceutical compositions comprising these compounds and the use of these compounds and compositions.