摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(3S,8S,9S,10R,13S,14S,17S)-17-乙酰基-3-羟基-10,13-二甲基-1,2,3,4,8,9,11,12,14,15,16,17-十二氢环戊烯并[a]菲-7-酮 | 33530-84-6

中文名称
(3S,8S,9S,10R,13S,14S,17S)-17-乙酰基-3-羟基-10,13-二甲基-1,2,3,4,8,9,11,12,14,15,16,17-十二氢环戊烯并[a]菲-7-酮
中文别名
——
英文名称
3β-hydroxypregn-5-ene-7,20-dione
英文别名
5-pregnen-3-ol-7,20-dione;pregnenolone;7-ketopregnenolone;3β-Hydroxy-5-pregnen-7,20-dion;3β-Hydroxy-pregn-5-en-7,20-dion;3-beta-Hydroxypregn-5-ene-7,20-dione;(3S,8S,9S,10R,13S,14S,17S)-17-acetyl-3-hydroxy-10,13-dimethyl-1,2,3,4,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-7-one
(3S,8S,9S,10R,13S,14S,17S)-17-乙酰基-3-羟基-10,13-二甲基-1,2,3,4,8,9,11,12,14,15,16,17-十二氢环戊烯并[a]菲-7-酮化学式
CAS
33530-84-6
化学式
C21H30O3
mdl
——
分子量
330.467
InChiKey
WNHLZNUVEVVTSY-GVQHXQKQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3
  • 重原子数:
    24
  • 可旋转键数:
    1
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.81
  • 拓扑面积:
    54.4
  • 氢给体数:
    1
  • 氢受体数:
    3

SDS

SDS:4c77634d3830c7b54c36ed07ffca9580
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • Metal-Free Allylic Oxidation of Steroids Using TBAI/TBHP Organocatalytic Protocol
    作者:Ying-Pong Lam、Ying-Yeung Yeung
    DOI:10.1002/asia.201800256
    日期:2018.9.4
    A mild, efficient and organocatalytic allylic oxidation of steroids using a TBAI/TBHP protocol has been developed. A range of bioactive Δ5‐en‐7‐ones can be easily prepared from the corresponding Δ5‐steroids. The methodology features several advantages, including readily available starting materials, environmentally benign oxidant, high functional group compatibility, and metal‐free catalysis.
    已经开发了使用TBAI / TBHP方案进行的类固醇的温和,有效和有机催化的烯丙基氧化。生物活性Δ的范围5 -烯-7-酮可以由相应的Δ容易地制备5 -steroids。该方法具有许多优点,包括容易获得的起始原料,对环境无害的氧化剂,高官能团相容性和无金属催化作用。
  • Allylic oxidation of steroidal olefins by vanadyl acetylacetonate and tert-butyl hydroperoxide
    作者:Wendell S. Grainger、Edward J. Parish
    DOI:10.1016/j.steroids.2015.06.005
    日期:2015.9
    Readily available vanadyl acetylacetonate was found to oxidize the allylic sites of Δ(5) steroidal alcohols without protection of hydroxyl groups. Cholesterol, dehydroepiandrosterone, cholesterol benzoate, cholesterol acetate, pregnenolone, and 5-pregnen-3,20-diene were oxidized to 7-keto products using vanadyl acetylacetonate in one pot reactions at room temperature in the presence of oxygen and water
    发现容易获得的乙酰丙酮氧钒在没有羟基保护的情况下氧化 Δ(5) 甾体醇的烯丙基位点。胆固醇、脱氢表雄酮、苯甲酸胆固醇、乙酸胆固醇、孕烯醇酮和 5-孕烯-3,20-二烯在室温下,在氧气和水存在下,使用乙酰丙酮氧钒在一锅反应中被氧化成 7-酮产物。
  • N-Hydroxyphthalimide catalyzed allylic oxidation of steroids with t-butyl hydroperoxide
    作者:Qian Zhao、Chao Qian、Xin-Zhi Chen
    DOI:10.1016/j.steroids.2014.12.004
    日期:2015.2
    A new and optimized procedure for the allylic oxidation of Δ(5)-steroids with t-butyl hydroperoxide in the presence of catalytic amounts of N-hydroxyphthalimide (NHPI) under mild conditions was developed, showing excellent regioselectivity and chemoselectivity (functional group compatibility). It was found that Co(OAc)2 could enhance the catalytic ability of NHPI resulting in better yields and shorter
    开发了一种在温和条件下在催化量的 N-羟基邻苯二甲酰亚胺 (NHPI) 存在下用叔丁基过氧化氢对 Δ(5)-类固醇进行烯丙基氧化的优化新方法,显示出优异的区域选择性和化学选择性(官能团兼容性) . 发现 Co(OAc)2 可以增强 NHPI 的催化能力,从而提高产率和缩短反应时间。还研究了与各种Δ(5)-甾体底物的反应机理和反应范围。
  • Hexose-6-phosphate Dehydrogenase Modulates 11β-Hydroxysteroid Dehydrogenase Type 1-Dependent Metabolism of 7-keto- and 7β-hydroxy-neurosteroids
    作者:Lyubomir G. Nashev、Charlie Chandsawangbhuwana、Zoltan Balazs、Atanas G. Atanasov、Bernhard Dick、Felix J. Frey、Michael E. Baker、Alex Odermatt
    DOI:10.1371/journal.pone.0000561
    日期:——
    BackgroundThe role of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11β-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH), which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11β-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11β-HSD1 has not been assessed.MethodologyWe investigated the 11β-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7α-hydroxy- and 7β-hydroxy-dehydroepiandrosterone (DHEA) and 7-keto- and 7β-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11β-HSD1.Principal FindingsWe demonstrated that 11β-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11β-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7β-hydroxy metabolites, indicating a role for H6PDH and 11β-HSD1 in the local generation of 7β-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7β-hydroxy-neurosteroids.ConclusionsOur results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11β-HSD1 and greatly depends on the coexpression with H6PDH. Thus, the impact of H6PDH on 11β-HSD1 activity has to be considered for understanding both glucocorticoid and neurosteroid action in different tissues.
    -hydroxy-neurosteroids。
  • Visible-Light-Enabled Allylic C–H Oxidation: Metal-free Photocatalytic Generation of Enones
    作者:Chao Liu、Hui Liu、Xuan Zheng、Shanyi Chen、Qihong Lai、Changlong Zheng、Mingqiang Huang、Kaicong Cai、Zhixiong Cai、Shunyou Cai
    DOI:10.1021/acscatal.1c05124
    日期:2022.1.21
查看更多