Metal-Free Allylic Oxidation of Steroids Using TBAI/TBHP Organocatalytic Protocol
作者:Ying-Pong Lam、Ying-Yeung Yeung
DOI:10.1002/asia.201800256
日期:2018.9.4
A mild, efficient and organocatalytic allylic oxidation of steroids using a TBAI/TBHP protocol has been developed. A range of bioactive Δ5‐en‐7‐ones can be easily prepared from the corresponding Δ5‐steroids. The methodology features several advantages, including readily available starting materials, environmentally benign oxidant, high functional group compatibility, and metal‐free catalysis.
Allylic oxidation of steroidal olefins by vanadyl acetylacetonate and tert-butyl hydroperoxide
作者:Wendell S. Grainger、Edward J. Parish
DOI:10.1016/j.steroids.2015.06.005
日期:2015.9
Readily available vanadyl acetylacetonate was found to oxidize the allylic sites of Δ(5) steroidal alcohols without protection of hydroxyl groups. Cholesterol, dehydroepiandrosterone, cholesterol benzoate, cholesterol acetate, pregnenolone, and 5-pregnen-3,20-diene were oxidized to 7-keto products using vanadyl acetylacetonate in one pot reactions at room temperature in the presence of oxygen and water
N-Hydroxyphthalimide catalyzed allylic oxidation of steroids with t-butyl hydroperoxide
作者:Qian Zhao、Chao Qian、Xin-Zhi Chen
DOI:10.1016/j.steroids.2014.12.004
日期:2015.2
A new and optimized procedure for the allylicoxidation of Δ(5)-steroids with t-butyl hydroperoxide in the presence of catalytic amounts of N-hydroxyphthalimide (NHPI) under mild conditions was developed, showing excellent regioselectivity and chemoselectivity (functional group compatibility). It was found that Co(OAc)2 could enhance the catalytic ability of NHPI resulting in better yields and shorter
Hexose-6-phosphate Dehydrogenase Modulates 11β-Hydroxysteroid Dehydrogenase Type 1-Dependent Metabolism of 7-keto- and 7β-hydroxy-neurosteroids
作者:Lyubomir G. Nashev、Charlie Chandsawangbhuwana、Zoltan Balazs、Atanas G. Atanasov、Bernhard Dick、Felix J. Frey、Michael E. Baker、Alex Odermatt
DOI:10.1371/journal.pone.0000561
日期:——
BackgroundThe role of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11β-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH), which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11β-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11β-HSD1 has not been assessed.MethodologyWe investigated the 11β-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7α-hydroxy- and 7β-hydroxy-dehydroepiandrosterone (DHEA) and 7-keto- and 7β-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11β-HSD1.Principal FindingsWe demonstrated that 11β-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11β-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7β-hydroxy metabolites, indicating a role for H6PDH and 11β-HSD1 in the local generation of 7β-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7β-hydroxy-neurosteroids.ConclusionsOur results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11β-HSD1 and greatly depends on the coexpression with H6PDH. Thus, the impact of H6PDH on 11β-HSD1 activity has to be considered for understanding both glucocorticoid and neurosteroid action in different tissues.
-hydroxy-neurosteroids。
Visible-Light-Enabled Allylic C–H Oxidation: Metal-free Photocatalytic Generation of Enones