摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

氯甲烷 | 74-87-3

中文名称
氯甲烷
中文别名
一氯甲烷;甲基氯;甲基烷
英文名称
methyl chloride
英文别名
methylene chloride;chloromethane;monochloromethane
氯甲烷化学式
CAS
74-87-3
化学式
CH3Cl
mdl
——
分子量
50.4878
InChiKey
NEHMKBQYUWJMIP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    −97 °C(lit.)
  • 沸点:
    −24.2 °C(lit.)
  • 密度:
    0.915 g/mL at 25 °C(lit.)
  • 蒸气密度:
    1.74 (vs air)
  • 闪点:
    <-30 °F
  • 溶解度:
    水中的溶解度:5.32g/Lat25°C
  • 介电常数:
    12.6(-20℃)
  • 暴露限值:
    TLV-TWA 50 ppm (~105 mg/m3) (ACGIH), 100 ppm (~210 mg/m3) (OSHA); ceiling 100 ppm (MSHA), 200 ppm (OSHA); TLV STEL 100 ppm (ACGIH); carcinogenicity: Animal Inadequate Evidence, Human Inad equate Evidence (IARC).
  • 物理描述:
    Methyl chloride appears as a colorless gas with a faint sweet odor. Shipped as a liquid under its vapor pressure. A leak may either be liquid or vapor. Contact with the liquid may cause frostbite by evaporative cooling. Easily ignited. Vapors heavier than air. Can asphyxiate by the displacement of air. Under prolonged exposure to fire or intense heat the containers may rupture violently and rocket. Used to make other chemicals and as a herbicide.
  • 颜色/状态:
    Colorless compressed gas or liquid
  • 气味:
    Faint sweet ethereal odor
  • 味道:
    Sweet taste
  • 蒸汽密度:
    1.8 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    4300 mm Hg at 25 °C
  • 亨利常数:
    0.01 atm-m3/mole
  • 大气OH速率常数:
    4.36e-14 cm3/molecule*sec
  • 稳定性/保质期:
    1. 稳定性<sup>[23]</sup> - 稳定 2. 禁配物<sup>[24]</sup> - 强氧化剂、镁、钾、钠及其合金等 3. 应避免接触的条件<sup>[25]</sup> - 潮湿空气 4. 聚合危害<sup>[26]</sup> - 不聚合 5. 分解产物<sup>[27]</sup> - 氯化氢
  • 自燃温度:
    632 °C
  • 分解:
    ... In contact with moisture undergoes slow decomposition to hydrochloric acid and methanol.
  • 粘度:
    0.00027 Pa.s at 20 °C (liquid, 0.5 MPa)
  • 腐蚀性:
    Methyl chloride will attack some forms of plastics, rubber and coatings.
  • 燃烧热:
    -5290 Btu/lb = -2939 cal/g = -123.1X10+5 J/kg
  • 汽化热:
    18.92 kJ/mol at 25 °C; 21.40 kJ/mol at boiling point
  • 表面张力:
    Liquid Surface Tension: 16.2 dynes/cm = 0.0162 N/m at 20 °C
  • 电离电位:
    11.28 eV
  • 气味阈值:
    Odor recognition in air: 1.00x10+1 ppm (chemically pure)
  • 折光率:
    Index of refraction: 1.3712 at -23.7 °C (liquid)
  • 保留指数:
    332.92;332.92;332;340;332;325.2;332;326;332;332

计算性质

  • 辛醇/水分配系数(LogP):
    0.8
  • 重原子数:
    2
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
本研究的目标是调查谷胱甘肽转移酶T1(GSTT1)的遗传多态性如何影响甲基氯在人体内的代谢和处置。参与研究的24名志愿者(13名男性和11名女性)是从之前通过测量溶血红细胞中甲基氯的谷胱甘肽转移酶活性对GSTT1进行表型分组的208人中招募的。8名GSTT1活性高(+/+),8名活性中等(+/0)和8名无活性(0/0)的个体在暴露室中接触甲基氯气体(10 ppm)2小时。通过测量吸入空气、呼出空气和血液中甲基氯的浓度来研究其摄取和处置。将具有两个消除途径(对应于呼气和代谢)的两室模型拟合到实验数据。在GSTT1活性高、中、无的个体中,甲基氯的平均净呼吸摄取量分别为243、158和44微摩尔。+/+组的代谢清除率很高(4.6 L/min),+/0组中等(2.4 L/min),而0/0个体的代谢清除率接近于零,而三组的呼气清除率相似。未检测到与暴露相关的尿液中S-甲基半胱氨酸的增加。然而,性别和GSTT1表型似乎影响背景水平。总之,GSTT1似乎是人体内甲基氯代谢的唯一决定因素。因此,功能丧失的GSTT1个体完全缺乏代谢甲基氯的能力。
The aim of the present study was to investigate how the genetic polymorphism in glutathione transferase T1 (GSTT1) affects the metabolism and disposition of methyl chloride in humans in vivo. The 24 volunteers (13 males and 11 females) who participated in the study were recruited from a group of 208 individuals previously phenotyped for GSTT1 by measuring the glutathione transferase activity with methyl chloride in lysed erythrocytes ex vivo. Eight individuals with high (+/+), eight with medium (+/0) and eight with no (0/0) GSTT1 activity were exposed to methyl chloride gas (10 ppm) in an exposure chamber for 2 hr. Uptake and disposition was studied by measuring the concentration of methyl chloride in inhaled air, exhaled air and blood. A two-compartment model with two elimination pathways corresponding to exhalation and metabolism was fitted to experimental data. The average net respiratory uptake of methyl chloride was 243, 158, and 44 umol in individuals with high, intermediate and no GSTT1 activity, respectively. Metabolic clearance was high (4.6 L/min) in the +/+ group, intermediate (2.4 L/min) in the +/0 group, and close to zero in 0/0 individuals, while the exhalation clearance was similar in the three groups. No exposure related increase in urinary S-methyl cysteine was detected. However, gender and the GSTTl phenotype seemed to affect the background levels. In conclusion, GSTT1 appears to be the sole determinant of methyl chloride metabolism in humans. Thus, individuals with nonfunctional GSTT1 entirely lack the capacity to metabolize methyl chloride.
来源:Hazardous Substances Data Bank (HSDB)
代谢
肝脏转化为甲醛和二氧化碳。排泄:肾脏(N-乙酰-S-甲基半胱氨酸)。
Hepatic to formaldehyde and carbon dioxide. Elimination: Renal (N-acetyl-S-methylcysteine).
来源:Hazardous Substances Data Bank (HSDB)
代谢
甲基氯化物通过和谷胱甘肽结合代谢,生成S-甲基谷胱甘肽、S-甲基半胱氨酸以及其他含硫化合物,这些化合物通过尿液排出或进一步代谢为甲硫醇。细胞色素P450依赖的甲硫醇代谢可能产生甲醛和甲酸,其中的碳原子可用于单碳池,以整合进入大分子或形成二氧化碳。另外,甲醛也可以通过P450的氧化脱氯作用直接从氯甲烷中产生。
Methyl chloride is metabolized by conjugation with glutathione to yield S-methylglutathione, S-methylcysteine, and other sulfur-containing compounds that are excreted in the urine or further metabolized to methanethiol. Cytochrome P450-dependent metabolism of methanethiol may yield formaldehyde and formic acid, whose carbon atoms are then available to the one-carbon pool for incorporation into macromolecules or for formation of CO2. Alternatively, formaldehyde may be directly produced from chloromethane via a P450 oxidative dechlorination.
来源:Hazardous Substances Data Bank (HSDB)
代谢
氯化甲烷与谷胱甘肽的结合主要是酶催化的。与所有其他研究的动物种类(大鼠、小鼠、牛、猪、羊和猕猴)相比,人类的红细胞含有一种谷胱甘肽转移酶同工酶,这种酶催化谷胱甘肽与甲基氯的结合。根据这种转移酶的数量或形式,人类可以分为两个不同的亚群体。
The conjugation of chloromethane with glutathione is primarily enzyme-catalyzed. In contrast to all other animal species investigated (rats, mice, bovine, pigs, sheep, and rhesus monkeys), human erythrocytes contain a glutathione transferase isoenzyme that catalyzes the conjugation of glutathione with methyl chloride. There are two distinct human subpopulations based on the amount or forms of this transferase.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
甲基氯是一种无色的压缩气体或液体。大部分甲基氯用作硅油、弹性体和树脂的中间原料。甲基氯曾被用于木材产品加工,作为某些聚苯乙烯泡沫的吹塑剂,以及作为制冷剂。它以前被用作气溶胶推进剂。作为杀虫剂,甲基氯目前在美国没有注册使用;但是批准的杀虫剂用途可能会定期更改,因此必须咨询联邦、州和地方当局以获取当前批准的用途。人类暴露和毒性:急性暴露的许多症状包括头痛、恶心、皮肤和眼睛刺激、中枢神经系统抑制、肺水肿、溶血、慢性中毒、感觉异常、麻醉、自发性流产风险增加、血管内溶血、昏迷、呼吸先快后慢、关节疼痛、四肢肿胀、糖尿病、吸入性肺炎、肉眼血尿、血液pH降低、胃肠道损伤、上呼吸道刺激、抑郁、疲劳、眩晕、肝脏损伤、血液病、脉搏加速、头部充血、神经衰弱障碍、消化不良、听觉和视觉幻觉、由儿茶酚胺引起的心律失常、晕厥、食欲不振、反射减弱、肉眼血红蛋白尿、代谢性酸中毒、胃肠道出血、憩室、肾脏损伤、肺损伤、角膜损伤、腹痛、唾液腺肿瘤增加、发绀、抽搐、昏迷和死亡。在严重或反复长期过度暴露后,已有死亡案例。甲基氯静脉注射有毒;通过摄入、皮下和腹膜内途径有中等毒性;通过吸入有轻微毒性。大多数甲基氯中毒案例涉及超过500 ppm的浓度。1963年,在一艘冰岛的渔船上发生冰箱甲基氯泄漏后,许多船员因各种神经系统症状和体征而住院。随后的随访显示,在47年后,心血管疾病的死亡率增加。自杀案例在甲基氯中毒后出现了严重的抑郁。在大气浓度为1%(10,000 ppm或20,700 mg/立方米)的甲基氯对TK6人类淋巴细胞的体外培养具有致突变性,并导致姐妹染色单体交换和DNA链断裂的增加。动物研究:将兔眼暴露于室温下的纯甲基氯气体中九十秒仅引起轻微的结膜充血。在兔子上,中枢神经系统抑制发生在40,000 ppm,在猫上发生在108,600 ppm。大鼠和小鼠通过吸入甲基氯6小时/天,最长可达12天。所有暴露于2000 ppm的雄性小鼠在第2天死亡或奄奄一息,其余2000 ppm组的小鼠在第5天奄奄一息。主要临床体征仅限于3500和5000 ppm组,包括严重腹泻和前肢不协调。在大鼠中,检查的组织中观察到的病变包括肾上腺皮质区的空泡变性以及睾丸小管和附睾的退行性变化。四只狗中有三只和两只猴子在暴露于500 ppm,每天6小时,每周6天后,分别在4周和16周后死亡。雌雄小鼠分别暴露于0、50、225或1000 ppm的甲基氯中,每天6小时,每周5天,持续2年。仅在暴露于1000 ppm的雄性小鼠中观察到肾肿瘤(良性和恶性)的统计学显著增加。在另一项为期两年的吸入研究中,雌雄大鼠暴露于0、51、224或997 ppm的甲基氯中,每天6小时,每周5天。没有报告肿瘤发病率增加。在啮齿动物中观察到具有发育迟缓的出生缺陷。在妊娠的第6至18天,将孕鼠通过吸入暴露于甲基氯。暴露于500或750 ppm导致心脏畸形的数量统计学显著增加。250或100 ppm的浓度被认为是非致畸的。以类似方式暴露于甲基氯的大鼠后代没有出现畸胎。甲基氯对细菌具有致突变性,并在植物中诱导染色体畸变。它能在体外诱导哺乳动物细胞的DNA损伤,但在体内不能。在培养的哺乳动物细胞中,它诱导突变和姐妹染色单体交换,并增强病毒细胞转化。甲基氯与谷胱甘肽的反应似乎构成了中毒的机制,与谷胱甘肽在解毒异生物质中通常提出的角色相反。
IDENTIFICATION AND USE: Methyl chloride is a colorless compressed gas or liquid. Most methyl chloride is used as an intermediate feedstock in silicone fluids, elastomers, and resins. Methyl chloride has been used in timber products processing, as a blowing agent for some polystyrene foams, and as a refrigerant. It was formerly used as an aerosol propellant. As a pesticide, methyl chloride is not registered for current use in the U.S.; but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. HUMAN EXPOSURE AND TOXICITY: The many symptoms of acute exposure include headache, nausea, irritation of the skin and eyes, central nervous system depression, pulmonary edema, hemolysis, chronic intoxication, paresthesia, narcosis, increased risk of spontaneous abortion, intravascular hemolysis, unconsciousness, rapid followed by slow respiration, painful joints, swelling of the extremities, diabetes, aspiration pneumonia, gross hematuria, reduction of blood pH, gastrointestinal injury, upper respiratory tract irritation, depression, fatigue, vertigo, liver damage, blood dyscrasias, acceleration of the pulse, congestion in the head, neurasthenic disorders, digestive disturbances, acoustical and optical delusions, arrhythmias produced by catecholamines, faintness, loss of appetite, hyporeflexia, gross hemoglobinuria, metabolic acidosis, GI hemorrhage, diverticula, kidney damage, lung damage, corneal injury, abdominal pain, increase in salivary gland tumors, cyanosis, convulsions, coma, and death. Deaths have occurred following single severe or repeated prolonged moderate overexposure. Methyl chloride is poisonous intravenously; moderately toxic by ingestion, subcutaneous, and intraperitoneal routes; mildly toxic by inhalation. Most cases of intoxication by methyl chloride have involved concentrations above 500 ppm. After methyl chloride leakage from a refrigerator occurred on board an Icelandic fishing vessel in 1963, many of the crew members were hospitalized due to various neurological symptoms and signs. Follow-up showed increased mortality due to cardiovascular diseases after 47 years. The suicide cases had developed severe depression after the methyl chloride intoxication. Methyl chloride at an atmospheric concentration of 1% (10,000 ppm or 20,700 mg/cu m) was mutagenic to TK6 human lymphoid cells in vitro and caused an increased incidence of sister chromatid exchange and breakage of DNA strands. ANIMAL STUDIES: Exposure of a rabbit's eye to pure methyl chloride gas at room temperature for ninety seconds caused only slight conjunctival hyperemia. CNS depression occurs at 40,000 ppm in rabbits and at 108,600 ppm in cats. Rats and mice were exposed by inhalation to methyl chloride for 6 hr/day for up to 12 days. All male mice exposed to 2000 ppm were dead or moribund by day 2, and all mice in the remaining 2000 ppm groups were moribund by day 5. The principal clinical signs, which were confined to the 5000 and 3500 ppm groups, included severe diarrhea and incoordination of the forelimbs. In rats, lesions observed in tissues examined included vacuolar degeneration of the zona fasciculata of the adrenal glands and degenerative changes in the seminiferous tubules and epididymis. Three of four dogs and both of two monkeys died after 4 weeks and 16 weeks, respectively, after exposure to 500 ppm for 6 hr/day, 6 days/wk. Mice and rats of both sexes were exposed at methyl chloride concentrations of 0, 50, 225 or 1000 ppm for 6 hr/day, 5 days/week for 2 years. A statistically significant increase in both malignant and nonmalignant renal tumors occurred in only the male mice exposed at 1000 ppm. In another two-year inhalation study, male and female rats were exposed to 0, 51, 224 or 997 ppm methyl chloride for 6 hr per day, five days per week. No increase in tumor incidence was reported. Birth defects with retarded development have been observed in rodents. Pregnant mice were exposed via inhalation on days 6-18 of gestation. Exposure at 500 or 750 ppm caused a statistically significant increase in the numbers of cardiac malformations. Exposures at concentrations of 250 or 100 ppm were considered nonteratogenic. Offspring of rats exposed similarly to methyl chloride showed no terata. Methyl chloride is mutagenic to bacteria and induces chromosomal aberrations in plants. It induces DNA damage in mammalian cells in vitro but not in vivo. In cultured mammalian cells, it induces mutations and sister chromatid exchanges and enhances viral cell transformation. Reaction of methyl chloride with glutathione appears to constitute a mechanism of toxication, contrary to the role usually proposed for glutathione in detoxifying xenobiotics.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
美国环保局健康与环境评估办公室的人类健康评估小组对甲基氯进行了致癌性评估。根据他们的分析,甲基氯的致癌性证据权重被归类为C组,这一分类是基于动物实验中的有限证据。目前没有关于人类的数据。作为一个C组化学物质,甲基氯被认为可能对人类具有致癌性。
The Human Health Assessment Group in EPA's Office of Health and Environmental Assessment has evaluated methyl chloride for carcinogenicity. According to their analysis, the weight-of-evidence for methyl chloride is group C, which is based on limited evidence in animals. No data are available for humans. As a group C chemical, methyl chloride is considered possibly carcinogenic to humans.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
评估:关于甲基氯在人类中的致癌性,证据不足。关于甲基氯在实验动物中的致癌性,证据也不足。总体评估:甲基氯对人类的致癌性无法分类(第3组)。
Evaluation: There is inadequate evidence for the carcinogenicity of methyl chloride in humans. There is inadequate evidence for the carcinogenicity of methyl chloride in experimental animals. Overall evaluation: Methyl chloride is not classifiable as to its carcinogenicity to humans (Group 3).
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A4:不能归类为人类致癌物。
A4: Not classifiable as a human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌物分类
国际癌症研究机构致癌物:甲基氯
IARC Carcinogenic Agent:Methyl chloride
来源:International Agency for Research on Cancer (IARC)
吸收、分配和排泄
基于生理的药代动力学(PBPK)模型通常通过调整代谢参数以适应实验毒代动力学数据来进行优化。代谢参数的估计值是在假定所有其他参数值的基础上得到的。同时,其他参数或结构模型的可靠性通常不会受到质疑。我们实验室通过对志愿者的吸入暴露实验发现,非结合者完全缺乏对氯甲烷的代谢能力,并且这些对象的消除只能通过呼气完成。因此,这些氯甲烷暴露数据提供了一个评估标准人类吸入PBPK模型总体可靠性的绝佳机会。为此,我们开发了一个针对氯甲烷的分层群体PBPK模型。该模型在贝叶斯框架下使用马尔可夫链蒙特卡洛(MCMC)模拟拟合实验数据。在贝叶斯分析中,可以将生理、解剖和物理化学参数的先验知识与通过体内实验获得的毒代动力学数据中嵌入的信息相结合。得到的结果既在统计上,也在生理学上都是合理的。模型偏差表明,为了充分描述挥发性氯甲烷的吸入和呼出,可能需要一个肺泡亚室。结果还表明,模型参数可能在个体内部存在显著变异性。...
Physiologically based pharmacokinetic (PBPK) models are often optimized by adjusting metabolic parameters so as to fit experimental toxicokinetic data. The estimates of the metabolic parameters are then conditional on the assumed values for all other parameters. Meanwhile, the reliability of other parameters, or the structural model, is usually not questioned. Inhalation exposures with human volunteers in our laboratory show that non-conjugators lack metabolic capacity for methyl chloride entirely, and that elimination in these subjects takes place via exhalation only. Therefore, data from these methyl chloride exposures provide an excellent opportunity to assess the general reliability of standard inhalation PBPK models for humans. A hierarchical population PBPK model for methyl chloride was developed. The model was fit to the experimental data in a Bayesian framework using Markov chain Monte Carlo (MCMC) simulation. In a Bayesian analysis, it is possible to merge a priori knowledge of the physiological, anatomical and physicochemical parameters with the information embedded in the experimental toxicokinetic data obtained in vivo. The resulting estimates are both statistically and physiologically plausible. Model deviations suggest that a pulmonary sub-compartment may be needed in order to describe the inhalation and exhalation of volatile methyl chloride adequately. The results also indicate that there may be significant intra-individual variability in the model parameters. ...
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在暴露于50 ppm后,氯甲烷呼气水平在50-80微克/升之间;而氯甲烷血药水平在35-100微克/升之间。
After exposure to 50 ppm, chloromethane breath levels range from 50-80 ug/L; while chloromethane blood levels range from 35-100 ug/L.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
甲基氯化物会从肺部迅速吸收,并迅速与血液和呼出空气中的水平达到平衡,这些水平大致与暴露浓度成正比。在高浓度下,代谢或排泄等动力学过程可能会饱和,从而限制吸收速率。动物研究表明,甲基氯化物从肺部吸收并在体内广泛分布。
... Methyl chloride is rapidly absorbed from the lungs and rapidly reaches equilibrium with levels in blood and expired air approximately proportional to the exposure concentrations. At high concentrations, kinetic processes such as metabolism or excretion may become saturated limiting the rate of uptake. Animals studies show that methyl chloride is absorbed from the lungs and extensively distributed throughout the body.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在吸入氯化甲基时,血液与气体的平衡迅速达到。在低毒物浓度下,呼吸和肝脏灌注似乎是气体吸收的限速因素,而在高浓度下,肝脏进行代谢的能力成为限速因素。
During inhalation exposure to methyl chloride, blood:gas equilibrium is rapidly attained. Respiration and hepatic perfusion appear to be rate-limiting factors of gas uptake at low toxicant concentrations, while capacity of liver to conduct metabolism is rate-limiting at high concentrations.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    2.1
  • 立即威胁生命和健康浓度:
    2,000 ppm
  • 安全说明:
    S16,S33,S9
  • 危险品运输编号:
    UN 1993 3
  • WGK Germany:
    2
  • 海关编码:
    2903110000
  • 危险类别:
    2.1
  • 危险类别码:
    R12
  • RTECS号:
    PA6300000
  • 包装等级:
    O52
  • 危险标志:
    GHS02,GHS08
  • 危险性描述:
    H220,H280,H351,H361fd,H373
  • 危险性防范说明:
    P210,P281,P410 + P403
  • 储存条件:
    储存注意事项: - 储存在阴凉、通风的有毒气体专用库房。 - 远离火种、热源,库温不宜超过30℃。 - 应与氧化剂分开存放,切忌混储。 - 使用防爆型照明和通风设施,并禁止使用易产生火花的机械设备和工具。 - 储区应配备泄漏应急处理设备。

SDS

SDS:0c029874c9d2e6eec07e3a65cc0d70c3
查看
第一部分:化学品名称

制备方法与用途

氯甲烷

氯甲烷,分子式为CH3Cl。又称甲基氯,是一种无色易液化的气体,具有乙醚的气味和甜味。其相对密度为0.92,熔点-97.6℃,沸点-23.7℃,空气中的比重为1.785,在-23.7℃时折光率为1.3712。微溶于水,易溶于乙醇、氯仿、苯、四氯化碳和冰醋酸等介质中。与空气形成的爆炸性混合物的爆炸极限为8.1%-17.2%(体积)。在高温条件下,它能水解成甲醇和盐酸,并加热或遇火生成光气。此外,氯甲烷还能与金属镁反应生成甲基氯化镁。

应用领域 1. 合成甲基氯硅烷

甲基氯硅烷是制备有机硅材料不可或缺的原料。主要合成方法包括格利雅法、有机锂法、缩合法和直接法,其中直接法目前是工业化生产甲基氯硅烷的唯一途径。其工艺流程为:将二氧化硅含量大于99%的硅矿石在1400℃下碳还原冷却得到硅块;再经过破碎、磨粉处理,筛选出一定粒径范围的硅粉;接着让硅粉与氯甲烷直接反应合成甲基氯硅烷。

2. 用作有机合成中的溶剂 用途

氯甲烷属于有机卤化物。微溶于水,易溶于氯仿、乙醚、乙醇和丙酮等介质中。它用于生产甲基氯硅烷、四甲基铅以及甲基纤维素等;少量也用于季铵化合物和农药的合成,在异丁橡胶生产过程中作为溶剂使用。此外,氯甲烷还广泛用作溶剂、提取剂、推进剂、制冷剂和局部麻醉剂,并用于农药、医药及香料等行业。

制备

一氯甲烷可通过甲烷直接氯化并分离获得。

毒性与防治 急性毒性

小鼠吸入6小时LC50为6.6克/立方米。职业中毒主要由吸入蒸气引起,症状包括头痛、眩晕、恶心和呕吐等。大鼠急性吸入的半致死浓度(LC50)约为5300毫克/立方米(4小时),口服LD50为1800毫克/公斤。

爆炸物危险特性

氯甲烷与空气混合后在明火或受热条件下可能会发生爆炸。燃烧时产生有毒的氯化物烟雾。

可燃性危险特性

氯甲烷遇明火或高温会燃烧,并释放出有毒的氯化物烟雾。

储运特性

应储存在通风良好、干燥低温的库房中,避免与氧气、空气等助燃气体钢瓶混存。搬运时轻装轻卸。

灭火剂

使用雾状水或泡沫进行灭火较为有效。

职业标准

时间加权平均容许浓度(TWA)为105毫克/立方米;短时间暴露极限值(STEL)为210毫克/立方米。

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    氯甲烷air 作用下, 以0%的产率得到光气
    参考文献:
    名称:
    Little, J., British Journal of Industrial Medicine, 1955, vol. 12, p. 304 - 308
    摘要:
    DOI:
  • 作为产物:
    描述:
    溴甲烷盐酸 作用下, 以 gas 为溶剂, 生成 氯甲烷
    参考文献:
    名称:
    卤代烷的气相SN2和E2反应
    摘要:
    已测量甲基、乙基、正丙基、异丙基、叔丁基和新戊基氯化物和溴化物与以下亲核试剂的气相反应的速率系数,按碱度递减的顺序列出:HO - 、CH 3 O - 、F - 、HO - (H 2 O)、CF 3 CH 2 O - 、H 2 NS - 、C 2 F 5 CH 2 O - 、HS - 和Cl - 。对于氯甲烷,反应效率首先显着低于 1,以 HO - (H 2 O) 作为亲核试剂,而对于甲基溴,以 HS - 作为亲核试剂;在这两种情况下,总反应放热度约为 30 kcal mol -1 。这些卤化物与强碱反应缓慢的早期结论被证明是错误的。在速率较慢的区域,氧阴离子通过消除与烷基氯化物和溴化物反应,而相同碱度的硫阴离子通过取代反应。这种差异是由于硫碱的消除速度减慢;与相同碱度的氧阴离子相比,硫阴离子没有增加亲核性
    DOI:
    10.1021/ja00180a003
  • 作为试剂:
    描述:
    二氯五氟丙烷 氯甲烷氧气 作用下, 675.0 ℃ 、170.28 kPa 条件下, 以19%的产率得到2,3,3,3-四氟丙烯
    参考文献:
    名称:
    NOVEL CATALYTIC METHOD FOR THE PRODUCTION OF FLUOROALKYLENES FROM CHLOROFLUOROHYDROCARBONS
    摘要:
    生产公式为R—CF═CHR的产品的方法: 其中R为F或CF3,R1在R为F时为F,在R为CF3时为H, 通过在适当催化剂的存在下,将公式为CF3—R2的反应物与选择自的还原剂(甲烷、氯化甲基或二者的混合物)在气相反应中反应。
    公开号:
    US20060217577A1
点击查看最新优质反应信息

文献信息

  • 수율이 개선된 무수당 알코올의 디에테르 제조 방법
    申请人:SAMYANG CORPORATION 주식회사 삼양사(120110515934) Corp. No ▼ 110111-4720945BRN ▼101-86-66838
    公开号:KR102152693B1
    公开(公告)日:2020-09-08
    본 발명은 무수당 알코올의 디에테르를 제조하는 방법에 관한 것으로, 더욱 상세하게는, 무수당 알코올과 알킬화 시약(예컨대, 디메틸 설페이트 또는 메틸 클로라이드)을 반응시켜 무수당 알코올의 디에테르를 제조함에 있어서, 무수당 알코올의 모노에테르를 무수당 알코올과 함께 알킬화 시약과 반응시킴으로써, 무수당 알코올을 단독으로 알킬화 시약과 반응시킨 경우에 비하여 수율을 향상시킬 수 있고, 또한 상기 무수당 알코올의 모노에테르의 공급원으로서 무수당 알코올의 디에테르 정제시 발생하는 증류 부산물을 활용할 수 있어 공정 폐기물을 줄일 수 있고, 공정의 원가를 절감할 수 있는 방법에 관한 것이다.
    本发明涉及一种制备无水糖醇的二醚的方法,更详细地说,涉及将无水糖醇与烷基化试剂(例如二甲基硫酸酯或氯化甲基)反应以制备无水糖醇的二醚的方法,通过将无水糖醇的单醚与无水糖醇和烷基化试剂一起反应,可以提高产率,同时可以利用无水糖醇的单醚作为无水糖醇的二醚提纯时产生的蒸馏副产品,从而减少工艺废物,降低工艺成本。
  • Orthocarbonsäure-ester mit 2,4,10-Trioxaadamantanstruktur als Carboxylschutzgruppe; Verwendung zur Synthese von substituierten Carbonsäuren mit Hilfe von<i>Grignard</i>-Reagenzien
    作者:Gundula Voss、Hans Gerlach
    DOI:10.1002/hlca.19830660741
    日期:1983.11.2
    Ortho Esters with 2,4,10-Trioxaadamantane Structure as Carboxyl Protecting Group; Applications in the Synthesis of Substituted Carboxylic Acids by Means of Grignard Reagents
    具有2,4,10-三氧杂金刚烷结构作为羧基保护基的邻苯二甲酸酯; 格氏试剂在取代羧酸合成中的应用。
  • 一种用于制备肟菌酯的中间体及其合成方法
    申请人:阜新孚隆宝医药科技有限公司
    公开号:CN111807990B
    公开(公告)日:2021-03-02
    本发明涉及一种用于制备肟菌酯的中间体及其合成方法,以2‑肟‑邻甲基苯乙腈为原料,在碱水溶液中加热水解,得到2‑肟‑邻甲基苯乙酸或其单钠盐/单钾盐或双钠盐/双钾盐;在碱性条件下,与甲基化试剂反应,得到(E)‑2‑(甲氧亚胺)‑邻甲基苯乙酸甲酯。本发明具有原料易得,产物为单一反式构型,且操作简便的特点,适合工业化生产。
  • Intermediates useful for the preparation of antihistaminic piperidine derivatives
    申请人:Merrell Pharmaceuticals, Inc.
    公开号:US06348597B2
    公开(公告)日:2002-02-19
    The present invention is related to a novel intermediates and processes which are useful in the preparation of certain antihistaminic piperidine derivatives of the formula wherein W represents —C(═O)— or —CH(OH)—; R1 represents hydrogen or hydroxy; R2 represents hydrogen; R1 and R2 taken together form a second bond between the carbon atoms bearing R1 and R2; n is an integer of from 1 to 5; m is an integer 0 or 1; R3 is —COOH or —COOalkyl wherein the alkyl moiety has from 1 to 6 carbon atoms and is straight or branched each of A is hydrogen or hydroxy; and pharmaceutically acceptable salts and individual optical isomers thereof, with the proviso that where R1 and R2 are taken together to form a second bond between the carbon atoms bearing R1 and R2 or where R1 represented hydroxy, m is an integer 0.
    本发明涉及一种新型中间体和过程,该中间体和过程在制备某些抗组胺酸哌啶衍生物的过程中非常有用,其化学式为 其中 W代表—C(═O)—或—CH(OH)—; R1代表氢或羟基; R2代表氢; R1和R2一起形成连接R1和R2的碳原子之间的第二键; n为1至5的整数; m为0或1的整数; R3为—COOH或—COO烷基,其中烷基基团具有1至6个碳原子,直链或支链,A的每个是氢或羟基;以及其药用可接受盐和各自的光学异构体, 但是当R1和R2一起形成连接R1和R2的碳原子之间的第二键或当R1代表羟基时,m为0。
  • Thermal properties of H2SnCl6 complexes
    作者:Tadeusz Janiak、Jerzy Błażejowski
    DOI:10.1016/0040-6031(89)87045-5
    日期:1989.3
    Russell-Jones theory for the dissociative volatilization process and a standard approach based on the Arrhenius model. The values of the parameters characterizing the thermal properties of alkanaminium hexachlorostannates, i.e. temperatures of the thermal effects, and the thermochemical and kinetic constants of thermolysis, depend on the number, length and structure of the alkyl substituent. The essential
    摘要 热分析方法(DTA、TG 和 DTG)用于研究具有通式 [(CnH2n+1)pNH4-p]2SnCl6(其中 n = 1–4 和 p = 2–4)的无支链复合盐的热行为和其他几种环状和开链支链脂肪族链烷胺六氯锡酸盐。这些化合物的热解离通常可以使用等式来概括,其中 A 表示烷基(a = 0 和 s = 1 表示季铵盐,a = 1 和 s = 0 表示其他研究的化合物)。具有简单结构的衍生物的热解发生在一个步骤中并导致它们的完全挥发。其他化合物的分解,通常具有复杂的结构,伴随着副反应。实验 TG 曲线用于检查热解的热力学和动力学。热解离焓基于范特霍夫方程进行评估。导出的值与可用的文献数据一起用于确定盐的形成焓和晶格能。后者的数量也使用 Kapustinskii-Yatsimirskii 公式进行了检查。使用Jacobs 和Russell-Jones 解离挥发过程理论和基于Arrhenius
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台