De novo design of a trans- -N-acetylglucosaminidase activity from a GH1 -glycosidase by mechanism engineering
作者:C. Andre-Miral、F. M. Kone、C. Solleux、C. Grandjean、M. Dion、V. Tran、C. Tellier
DOI:10.1093/glycob/cwu121
日期:2015.4.1
Glycoside hydrolases are particularly abundant in all areas of metabolism as they are involved in the degradation of natural polysaccharides and glycoconjugates. These enzymes are classified into 133 families (CAZy server, http://www.cazy.org) in which members of each family have a similar structure and catalytic mechanism. In order to understand better the structure/function relationships of these enzymes and their evolution and to develop new robust evolved glycosidases, we undertook to convert a Family 1 thermostable β-glycosidase into an exo-β-N-acetylglucosaminidase. This latter activity is totally absent in Family 1, while natural β-hexosaminidases belong to CAZy Families 3, 20 and 84. Using molecular modeling, we first showed that the docking of N-acetyl-d-glucosamine in the subsite −1 of the β-glycosidase from Thermus thermophilus (TtβGly) suggested several steric conflicts with active site amino-acids (N163, E338) induced by the N-acetyl group. Both N163A and N163D-E338G mutations induced significant N-acetylglucosaminidase activity in TtβGly. The double mutant N163D-E338G was also active on the bicyclic oxazoline substrate, suggesting that this mutated enzyme uses a catalytic mechanism involving a substrate-assisted catalysis with a noncovalent oxazoline intermediate, similar to the N-acetylglucosaminidases from Families 20 and 84. Furthermore, a very efficient trans-N-acetylglucosaminidase activity was observed when the double mutant was incubated in the presence of NAG-oxazoline as a donor and N-methyl-O-benzyl-N-(β-d-glucopyranosyl)-hydroxylamine as an acceptor. More generally, this work demonstrates that it is possible to exchange the specificities and catalytic mechanisms with minimal changes between phylogenetically distant protein structures.
糖苷水解酶在所有代谢领域都特别丰富,因为它们参与天然多糖和糖复合物的降解。这些酶被分为133个家族(CAZy服务器,http://www.cazy.org),其中每个家族的成员具有相似的结构和催化机制。为了更好地了解这些酶的结构/功能关系及其进化并开发新的稳健进化糖苷酶,我们着手将家族1热稳定β-糖苷酶转化为外切-β-N-乙酰氨基葡萄糖苷酶。后一种活性在家族 1 中完全不存在,而天然 β-氨基己糖苷酶属于 CAZy 家族 3、20 和 84。通过分子建模,我们首先表明 N-乙酰基-d-氨基葡萄糖在 β-氨基己糖苷酶的 -1 子位点上的对接来自嗜热栖热菌 (TtβGly) 的 β-糖苷酶表明与 N-乙酰基诱导的活性位点氨基酸(N163、E338)存在多种空间冲突。 N163A 和 N163D-E338G 突变均诱导 TtβGly 中显着的 N-乙酰氨基葡萄糖苷酶活性。双突变体 N163D-E338G 对双环恶唑啉底物也有活性,表明这种突变酶使用的催化机制涉及非共价恶唑啉中间体的底物辅助催化,类似于来自家族 20 和 84 的 N-乙酰氨基葡萄糖苷酶。当双突变体在 NAG-恶唑啉作为供体和 N-甲基-O-苄基-N-(β-d-吡喃葡萄糖基)-羟胺作为受体的情况下孵育时,观察到非常有效的反式-N-乙酰氨基葡萄糖苷酶活性。更一般地说,这项工作表明,在系统发育上遥远的蛋白质结构之间以最小的变化交换特异性和催化机制是可能的。