摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

linaclotide | 851199-59-2

中文名称
——
中文别名
——
英文名称
linaclotide
英文别名
cys-cys-glu-tyr-cys-cys-asn-pro-ala-cys-thr-gly-cys-tyr;(2S)-2-[[(1R,4S,7S,13S,16R,21R,24R,27S,30S,33R,38R,44S)-21-amino-13-(2-amino-2-oxoethyl)-27-(2-carboxyethyl)-44-[(1R)-1-hydroxyethyl]-30-[(4-hydroxyphenyl)methyl]-4-methyl-3,6,12,15,22,25,28,31,40,43,46,51-dodecaoxo-18,19,35,36,48,49-hexathia-2,5,11,14,23,26,29,32,39,42,45,52-dodecazatetracyclo[22.22.4.216,33.07,11]dopentacontane-38-carbonyl]amino]-3-(4-hydroxyphenyl)propanoic acid
linaclotide化学式
CAS
851199-59-2
化学式
C59H79N15O21S6
mdl
——
分子量
1526.76
InChiKey
KXGCNMMJRFDFNR-WDRJZQOASA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    231-235°C (dec.)
  • 沸点:
    2045.0±65.0 °C(Predicted)
  • 密度:
    1.60
  • 溶解度:
    可溶于DMSO(稍微加热)、甲醇((稍微加热))、水(稍微加热)
  • 颜色/状态:
    White to off-white powder

计算性质

  • 辛醇/水分配系数(LogP):
    -6.8
  • 重原子数:
    101
  • 可旋转键数:
    13
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.53
  • 拓扑面积:
    726
  • 氢给体数:
    19
  • 氢受体数:
    28

ADMET

代谢
利那洛肽在胃肠道中被代谢为其主要活性代谢物MM-419447,通过失去末端的酪氨酸部分。利那洛肽和其代谢物在小肠腔内被蛋白水解降解为更小的肽和天然存在的氨基酸。
Linaclotide is metabolized within the gastrointestinal tract to its principal, active metabolite, MM-419447, by loss of the terminal tyrosine moiety. Both linaclotide and the metabolite are proteolytically degraded within the intestinal lumen to smaller peptides and naturally occurring amino acids.
来源:DrugBank
代谢
一组实验主要在啮齿动物中研究了利那洛肽的代谢。利那洛肽在小肠中被代谢,其通过二硫键的即时断裂,使利那洛肽容易受到胃肠道环境中存在的酶的进一步消化。已经鉴定出几种含有3-13个氨基酸的分解产物。只有一种代谢物,MM-419447,显示出药效动力学活性。
The metabolism of linaclotide was investigated in a set of experiments, predominantly in rodents. Linaclotide is metabolised in the intestine by immediate break down of the disulfide bridges which prone linaclotide to further digestion by the enzymes present in the gastrointestinal environment. Several breakdown products containing 3-13 amino acids have been identified. Only one metabolite, MM-419447, was shown to be pharmacodynamic active.
来源:Hazardous Substances Data Bank (HSDB)
代谢
利那洛肽在胃肠道中被代谢为其主要活性代谢物,通过失去末端的酪氨酸部分。利那洛肽及其代谢物在小肠腔内被蛋白水解降解为更小的肽和天然存在的氨基酸。
Linaclotide is metabolized within the gastrointestinal tract to its principal, active metabolite by loss of the terminal tyrosine moiety. Both linaclotide and the metabolite are proteolytically degraded within the intestinal lumen to smaller peptides and naturally occurring amino acids.
来源:Hazardous Substances Data Bank (HSDB)
代谢
我们检查了在模拟胃肠道的条件下利那洛肽的代谢稳定性,并表征了代谢物MM-419447(CCEYCCNPACTGC),它对利那洛肽的药理效果有所贡献。在大鼠和人类中,这些活性肽的系统暴露量是低的,在大鼠中观察到的利那洛肽和MM-419447的低系统和门静脉浓度证实了这两种肽在口服给药后吸收量极小。利那洛肽在胃的酸性环境中稳定,在小肠中转化为MM-419447。这两种肽的二硫键在小肠中被还原,随后在那里被蛋白酶水解和降解。口服给药利那洛肽后,大鼠粪便中有不到1%的剂量以活性肽形式排出,人类粪便中平均为3-5%;在两种情况下,回收的主要肽是MM-419447。MM-419447在体外对T84细胞表现出高亲和力结合,导致细胞内环磷酸鸟苷酸(cGMP)显著且浓度依赖性地积累。在大鼠胃肠道功能模型中,口服给药MM-419447显著增加了小肠环中的液体分泌,增加了肠腔内的cGMP,并导致胃肠道转运速度剂量依赖性地加快。这些结果表明活性代谢物在利那洛肽的药理学中的作用至关重要。
... We examined the metabolic stability of linaclotide in conditions that mimic the gastrointestinal tract and characterized the metabolite MM-419447 (CCEYCCNPACTGC), which contributes to the pharmacologic effects of linaclotide. Systemic exposure to these active peptides is low in rats and humans, and the low systemic and portal vein concentrations of linaclotide and MM-419447 observed in the rat confirmed both peptides are minimally absorbed after oral administration. Linaclotide is stable in the acidic environment of the stomach and is converted to MM-419447 in the small intestine. The disulfide bonds of both peptides are reduced in the small intestine, where they are subsequently proteolyzed and degraded. After oral administration of linaclotide, <1% of the dose was excreted as active peptide in rat feces and a mean of 3-5% in human feces; in both cases MM-419447 was the predominant peptide recovered. MM-419447 exhibits high-affinity binding in vitro to T84 cells, resulting in a significant, concentration-dependent accumulation of intracellular cyclic guanosine-3',5'-monophosphate (cGMP). In rat models of gastrointestinal function, orally dosed MM-419447 significantly increased fluid secretion into small intestinal loops, increased intraluminal cGMP, and caused a dose-dependent acceleration in gastrointestinal transit. These results demonstrate the importance of the active metabolite in contributing to linaclotide's pharmacology.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 肝毒性
在临床试验中,利那洛肽治疗并未与血清酶水平的显著变化或临床上明显的肝脏损伤发生关联。出现了轻微短暂的ALT升高。
In clinical trials, linaclotide therapy was not associated with significant changes in serum enzyme levels or episodes of clinically apparent liver injury. Minor transient ALT elevations arose in
来源:LiverTox
毒理性
  • 毒性总结
肠易激综合症-便秘型(IBS-C)或慢性特发性便秘(CIC)患者中最常见的不良反应(发生率至少为2%)包括腹泻、腹痛、胀气和腹部膨胀。
Most common adverse reactions (incidence of at least 2%) reported in IBS-C or CIC patients are diarrhea, abdominal pain, flatulence and abdominal distension.
来源:DrugBank
毒理性
  • 毒性总结
识别和使用:鲁那替丁是一种白色至类白色的粉末。鲁那替丁用于成人治疗伴有便秘的肠易激综合症。它也用于成人治疗慢性特发性便秘。人类暴露和毒性:关于鲁那替丁过量的经验有限。在鲁那替丁的临床开发计划中,给22名健康志愿者单次剂量2897微克;这些受试者的安全概况与整体鲁那替丁治疗人群一致,其中最常见的副作用是腹泻。鲁那替丁禁用于6岁以下的婴儿和儿童,并应避免在6-17岁的儿童和青少年中使用。尽管在18岁以下儿科患者中尚未建立安全性和有效性,但在年轻的小鼠中以单次、临床相关的成人口服剂量给予鲁那替丁时会导致死亡。在体外人类外周血淋巴细胞培养中的染色体畸变分析中,鲁那替丁没有表现出基因毒性。动物研究:在大鼠中,单次口服剂量达到5.0毫克/千克时,没有检测到鲁那替丁的系统暴露。在生存、体重、食物消耗、临床观察或宏观评估方面没有观察到与鲁那替丁相关的效应。给食蟹猴单次口服鲁那替丁的剂量为0.5、1.5、3.0和5.0毫克/千克。单次口服鲁那替丁(1.5毫克/千克或更高)的猴子表现出大便一致性改变(非成型和/或液态粪便)、食物消耗量定性减少和/或腹部膨胀。这些动物的个人体重数据没有显著变化。一只连续五天口服1.5毫克/千克/天的猴子在给药期间出现非成型和液态粪便,第四天给药时出现轻度腹部膨胀。这些结果表明,食蟹猴在单次口服剂量达到5.0毫克/千克的剂量下很好地耐受鲁那替丁。然而,当以临床相关的成人剂量给予鲁那替丁时,在幼年小鼠中看到了死亡。在新生小鼠中,鲁那替丁在出生后第7天口服1或2次每日剂量10微克/千克后导致死亡,这些死亡是由于快速严重的脱水。在新生小鼠中,鲁那替丁给药后通过补充皮下液体预防了死亡。在没有补充液体给药的研究中,随着幼年小鼠年龄的增长,对鲁那替丁的耐受性增加。在2周大的小鼠中,鲁那替丁在50微克/千克的剂量下很好地被耐受,但在单次口服剂量100微克/千克后发生死亡。在3周大的小鼠中,鲁那替丁在100微克/千克/天的剂量下很好地被耐受,但在单次口服剂量600微克/千克后发生死亡。在4周大的幼年小鼠中,鲁那替丁在1,000微克/千克/天的剂量下很好地被耐受,持续7天,在6周大的幼年小鼠中,在20,000微克/千克/天的剂量下很好地被耐受,持续28天。研究了鲁那替丁引起大鼠、兔和小鼠的致畸效应。在大鼠中口服剂量达到100毫克/千克/天,在兔中达到40毫克/千克/天,没有产生母体毒性,也没有对胚胎-胎儿发育产生任何影响。在小鼠中,至少40毫克/千克/天的口服剂量产生了严重的母体毒性,包括死亡、减少孕子宫和胎儿重量以及对胎儿形态的影响。在小鼠中,5毫克/千克/天的口服剂量没有产生母体毒性或对胚胎-胎儿发育产生任何不良影响。在大鼠中,鲁那替丁在口服剂量高达100,000微克/千克/天时对雄性和雌性的生育力或生殖功能没有影响。在体外细菌反向突变(Ames)分析中,鲁那替丁没有表现出基因毒性。
IDENTIFICATION AND USE: Linaclotide is a white to off-white powder. Linaclotide is used in adults in adults for the treatment of irritable bowel syndrome with constipation. It is also used in adults for the treatment of chronic idiopathic constipation. HUMAN EXPOSURE AND TOXICITY: There is limited experience with overdose of linaclotide. During the clinical development program of linaclotide, single doses of 2897 ug were administered to 22 healthy volunteers; the safety profile in these subjects was consistent with that in the overall linaclotide-treated population, with diarrhea being the most commonly reported adverse reaction. Linaclotide is contraindicated in infants and children younger than 6 years of age and should be avoided in children and adolescents 6-17 years of age. While safety and effectiveness has not been established in pediatric patients less than 18 years of age, linaclotide caused deaths in young juvenile mice when administered in single, clinically relevant, adult oral doses. Linaclotide was not genotoxic in the in vitro chromosomal aberration assay in cultured human peripheral blood lymphocytes. ANIMAL STUDIES: In rats, there was no detectable systemic exposure to linaclotide at single oral dose levels of up to 5.0 mg/kg. There were no linaclotide-related effects observed on survival, body weight, food consumption, clinical observations, or macroscopic evaluations. Cynomolgus monkeys were administered a single oral dose of linaclotide at dose levels of 0.5, 1.5, 3.0, and 5.0 mg/kg. The monkeys that were administered a single oral dose of linaclotide (1.5 mg/kg or greater) exhibited changes in stool consistency (non-formed and/or liquid feces), qualitatively reduced food consumption, and/or abdominal distention. There were no significant changes in individual body weight data for these animals. A monkey dosed orally for five consecutive days at 1.5 mg/kg/day exhibited non-formed and liquid feces over the course of the dosing period, with mild abdominal distention occurring on the fourth dosing day. These results demonstrated that linaclotide was well tolerated by Cynomolgus monkeys following a single oral dose at dose levels up to 5.0 mg/kg. However, deaths in juvenile mice were seen when linaclotide was administered in clinically relevant adult doses. In neonatal mice, linaclotide caused deaths at 10 ug/kg/day after oral administration of 1 or 2 daily doses on post-natal day 7. These deaths were due to rapid and severe dehydration. Supplemental subcutaneous fluid administration prevented death after linaclotide administration in neonatal mice. In studies conducted without supplemental fluid administration, tolerability to linaclotide increases with age in juvenile mice. In 2-week-old mice, linaclotide was well tolerated at a dose of 50 ug/kg/day, but deaths occurred after a single oral dose of 100 ug/kg. In 3-week-old mice, linaclotide was well tolerated at 100 ug/kg/day, but deaths occurred after a single oral dose of 600 ug/kg. Linaclotide was well tolerated and did not cause death in 4-week-old juvenile mice at a dose of 1,000 ug/kg/day for 7 days and in 6-week-old juvenile mice at a dose of 20,000 ug/kg/day for 28 days. The potential for linaclotide to cause teratogenic effects was studied in rats, rabbits and mice. Oral administration of up to 100 mg/kg/day in rats and 40 mg/kg/day in rabbits produced no maternal toxicity and no effects on embryo-fetal development. In mice, oral dose levels of at least 40 mg/kg/day produced severe maternal toxicity including death, reduction of gravid uterine and fetal weights, and effects on fetal morphology. Oral doses of 5 mg/kg/day did not produce maternal toxicity or any adverse effects on embryo-fetal development in mice. Linaclotide had no effect on fertility or reproductive function in male and female rats at oral doses of up to 100,000 ug/kg/day. Linaclotide was not genotoxic in an in vitro bacterial reverse mutation (Ames) assay.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 解毒与急救
/SRP:/ 立即急救:确保已经进行了充分的中和。如果患者停止呼吸,请开始人工呼吸,最好使用需求阀复苏器、球囊阀面罩设备或口袋面罩,按训练操作。如有必要,执行心肺复苏。立即用缓慢流动的水冲洗受污染的眼睛。不要催吐。如果患者呕吐,让患者身体前倾或将其置于左侧(如果可能,头部向下)以保持呼吸道畅通,防止吸入。保持患者安静,维持正常体温。寻求医疗救助。 /毒物A和B/
/SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on the left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Poisons A and B/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 解毒与急救
/SRP:/ 基本治疗:建立专利气道(如有需要,使用口咽或鼻咽气道)。如有必要,进行吸痰。观察呼吸不足的迹象,如有需要,协助通气。通过非循环呼吸面罩以10至15升/分钟的速度给予氧气。监测肺水肿,如有必要,进行治疗……。监测休克,如有必要,进行治疗……。预期癫痫发作,如有必要,进行治疗……。对于眼睛污染,立即用水冲洗眼睛。在运输过程中,用0.9%的生理盐水(NS)持续冲洗每只眼睛……。不要使用催吐剂。对于摄入,如果患者能够吞咽、有强烈的干呕反射且不流口水,则用温水冲洗口腔,并给予5毫升/千克,最多200毫升的水进行稀释……。在去污后,用干燥的无菌敷料覆盖皮肤烧伤……。/毒药A和B/
/SRP:/ Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if needed. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 mL/kg up to 200 mL of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool ... . Cover skin burns with dry sterile dressings after decontamination ... . /Poisons A and B/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
  • 吸收
口服后,利那洛肽不被吸收进入系统循环。在给予125微克或290微克剂量的利那洛肽后,未检测到利那洛肽或其活性代谢物的水平。
When taken orally, linaclotide is not absorbed into the systemic. No detectable levels of linaclotide or its active metabolite were noted after doses of 125 mcg or 290 mcg were administered.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
利那洛肽通过粪便排出(3-5%为活性代谢物)。然而,大部分剂量在大肠中被蛋白酶水解(包括二硫键还原的过程)后,通过粪便排出。
Linaclotide is eliminated fecally (3 - 5% as active metabolites). However most of the dose undergoes proteolysis (processes include reduction of disulfide bonds) in the intestine before being excreted via feces.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
由于在治疗口服剂量后无法测量利那洛肽的血浆浓度,因此预期利那洛肽在组织中的分布将极为有限。
Given that linaclotide plasma concentrations following therapeutic oral doses are not measurable, linaclotide is expected to be minimally distributed to tissues.
来源:DrugBank
吸收、分配和排泄
由于在治疗性口服剂量后无法测量利那洛肽的血浆浓度,因此预期利那洛肽在组织中的分布将极为有限。
Given that linaclotide plasma concentrations following therapeutic oral doses are not measurable, linaclotide is expected to be minimally distributed to tissues.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在连续每天给予290微克利那洛塞(Linzess)七天的情况下,禁食和进食状态下受试者粪便样本中活性肽的回收率平均约为5%(禁食状态)和约3%(进食状态),几乎全部以活性代谢物的形式存在。
Active peptide recovery in the stool samples of fed and fasted subjects following the daily administration of 290 mcg of Linzess for seven days averaged about 5% (fasted) and about 3% (fed) and virtually all as the active metabolite.
来源:Hazardous Substances Data Bank (HSDB)

制备方法与用途

利那洛肽是一种用于治疗便秘肠易激综合征(IBS-C)和慢性特发性便秘(CIC)的药物。以下是关于利那洛肽的一些关键信息:

适应症:
  1. 便秘型肠易激综合征 (IBS-C)
  2. 慢性特发性便秘 (CIC)
主要作用机制:
  • 利那洛肽是一种促胰液素受体激动剂,主要通过激活肠道L型氯离子通道来增加内脏感觉神经的阈值和调节肠蠕动。
  • 它能促进结肠水份吸收减少和排便频率增加。
用法用量:
  • 成人:通常起始剂量为12微克,每日一次,可与食物同服或分开服用。根据患者反应可以调整至最高30微克/天的维持量。
  • 儿童:6岁以下儿童禁用;6-17岁儿童不建议使用此药物。
不良反应:
  • 最常见的不良反应为腹泻、腹痛和呕吐。
  • 其他可能的副作用还包括恶心、头痛等。
注意事项与禁忌症:
  • 6岁以下儿童禁止使用利那洛肽。
  • 尚未在儿童中进行过充分的研究,因此不推荐给该年龄段患者使用。
  • 老年人及孕妇应在医生指导下谨慎使用。
  • 如果患者对利那洛肽或其任何成分过敏,则不应使用此药物。
特别注意:
  1. 幼鼠致死性实验:在动物研究中发现高剂量可能对未出生的小鼠有害,因此对于儿童用药需谨慎评估风险与益处。
  2. 腹泻管理:由于最常见的副作用为腹泻,医生可能会建议患者采取适当措施来缓解这一症状。
制备方法:
  • 采用半选择性策略氧化形成含三对二硫键的利那洛肽路线进行合成。具体步骤包括多肽的合成、裂解及纯化,并通过氯化血红素催化氧化法形成特定的二硫键结构。
  • 多肽合成:使用Fmoc固相合成技术逐步添加氨基酸单元至所需序列,最后脱除保护基团并进行纯化。
  • 二硫键构建:应用PhS(O)Ph/CH3SiCl3试剂体系在温和条件下实现目标蛋白的二硫键成环。

以上信息提供了利那洛肽的基本背景及其重要特性,但请始终遵循专业医疗人员的具体指导与建议。

反应信息

  • 作为反应物:
    描述:
    linaclotide盐酸盐酸胍三(2-羰基乙基)磷盐酸盐 、 sodium hydroxide 作用下, 以 aq. phosphate buffer 为溶剂, 生成 CCEYCCNPACTGCY
    参考文献:
    名称:
    近紫外光下烷基硫醇的磷化氢依赖光引发促进用户友好的肽脱硫
    摘要:
    肽作为药物靶点的重要性正在稳步上升,因此迫切需要高效、绿色的制备方法。合成工具箱中的一个关键缺陷是缺乏工业上可行的肽脱硫方法。如果没有这个工具,通常用于组装多肽和蛋白质的强大的天然化学连接反应仍然无法用于药物靶点的工业制备。目前的脱硫方法需要大量过量的膦试剂和硫醇添加剂或低丰度金属催化剂。在这里,我们报告了一种使用清洁、高产且低至 1.2 当量磷化氢的近紫外光的仅磷化氢光脱硫 (POP)。用户友好的反应给化学家完全控制,允许根据起始材料和膦溶解度选择溶剂和试剂。它可以在一系列溶剂中进行,包括水或缓冲液、受保护或未受保护的肽、低稀释度或高稀释度以及克规模。易氧化的氨基酸、π键、芳香环、硫胺键、硫酯和聚糖都对 POP 反应稳定。我们强调了这种方法对工业相关目标脱硫的效用,包括环肽和胰高血糖素样肽 1 (GLP-1(7-36))。该方法还与 NCL 缓冲液兼容,我们通过利那洛肽、抑肽酶和小麦蛋白
    DOI:
    10.1021/jacs.2c10625
  • 作为产物:
    描述:
    乙腈 为溶剂, 以0.66 mg的产率得到linaclotide
    参考文献:
    名称:
    富含半胱氨酸的肽利那洛肽的新区域选择性合成。
    摘要:
    利那洛肽是一种 14 氨基酸残基肽,经 FDA 批准用于治疗便秘型肠易激综合征 (IBS-C),可激活鸟苷酸环化酶 C 以加速肠道转运。在这里,我们展示了一种通过固相和液相的温和氧化反应完全选择性地形成三个二硫键以令人满意的总收率合成利那洛肽的新方法,使用 4-甲氧基三苯甲基 (Mmt)、二苯甲基 (Dpm) 和 2 -硝基苄基 (O-NBn) 保护基团的半胱氨酸分别作为底物。
    DOI:
    10.3390/molecules28031007
点击查看最新优质反应信息

文献信息

  • PROCESS FOR ISOLATING THERAPEUTIC PEPTIDES
    申请人:Fleming Michael Paul
    公开号:US20100261877A1
    公开(公告)日:2010-10-14
    Disclosed are methods of isolating linaclotide, a cyclized 14-amino-acid peptide with three disulfide bonds. The sequence consists of Cys-Cys-Glu-Tyr-Cys-Cys-Asn-Pro-Ala-Cys-Thr-Gly-Cys-Tyr with disulfide bridges between the cysteine residues at positions 1 and 6, 2 and 10, and 5 and 13. The drug acts as a GCC superagonist, elevating intracellular cGMP composition for treating various disorders, including gastrointestinal disorders, obesity, congestive heart failure and benign prostatic hyperplasia.
  • Phosphine-Dependent Photoinitiation of Alkyl Thiols under Near-UV Light Facilitates User-Friendly Peptide Desulfurization
    作者:Naresh M. Venneti、Ganesh Samala、Rana M. I. Morsy、Lawrence G. Mendoza、Albert Isidro-Llobet、Janine K. Tom、Subha Mukherjee、Michael E. Kopach、Jennifer L. Stockdill
    DOI:10.1021/jacs.2c10625
    日期:2023.1.18
    excesses of phosphine reagents and thiol additives or low-abundance metal catalysts. Here, we report a phosphine-only photodesulfurization (POP) using near-UV light that is clean, high-yielding, and requires as little as 1.2 equiv phosphine. The user-friendly reaction gives complete control to the chemist, allowing solvent and reagent selection based on starting material and phosphine solubility. It
    肽作为药物靶点的重要性正在稳步上升,因此迫切需要高效、绿色的制备方法。合成工具箱中的一个关键缺陷是缺乏工业上可行的肽脱硫方法。如果没有这个工具,通常用于组装多肽和蛋白质的强大的天然化学连接反应仍然无法用于药物靶点的工业制备。目前的脱硫方法需要大量过量的膦试剂和硫醇添加剂或低丰度金属催化剂。在这里,我们报告了一种使用清洁、高产且低至 1.2 当量磷化氢的近紫外光的仅磷化氢光脱硫 (POP)。用户友好的反应给化学家完全控制,允许根据起始材料和膦溶解度选择溶剂和试剂。它可以在一系列溶剂中进行,包括水或缓冲液、受保护或未受保护的肽、低稀释度或高稀释度以及克规模。易氧化的氨基酸、π键、芳香环、硫胺键、硫酯和聚糖都对 POP 反应稳定。我们强调了这种方法对工业相关目标脱硫的效用,包括环肽和胰高血糖素样肽 1 (GLP-1(7-36))。该方法还与 NCL 缓冲液兼容,我们通过利那洛肽、抑肽酶和小麦蛋白
  • A New Regioselective Synthesis of the Cysteine-Rich Peptide Linaclotide
    作者:Zhonghao Qiu、Xiandong Dai、Chongxu Fan、Ying Cao、Zirui Lv、Xingyong Liang、Fanhua Meng
    DOI:10.3390/molecules28031007
    日期:——
    Linaclotide is a 14-amino acid residue peptide approved by the FDA for the treatment of irritable bowel syndrome with constipation (IBS-C), which activates guanylate cyclase C to accelerate intestinal transit. Here we show a new method for the synthesis of linaclotide through the completely selective formation of three disulfide bonds in satisfactory overall yields via mild oxidation reactions of the
    利那洛肽是一种 14 氨基酸残基肽,经 FDA 批准用于治疗便秘型肠易激综合征 (IBS-C),可激活鸟苷酸环化酶 C 以加速肠道转运。在这里,我们展示了一种通过固相和液相的温和氧化反应完全选择性地形成三个二硫键以令人满意的总收率合成利那洛肽的新方法,使用 4-甲氧基三苯甲基 (Mmt)、二苯甲基 (Dpm) 和 2 -硝基苄基 (O-NBn) 保护基团的半胱氨酸分别作为底物。
查看更多