摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

adipate semialdehyde | 1266603-47-7

中文名称
——
中文别名
——
英文名称
adipate semialdehyde
英文别名
6-Oxohexanoate
adipate semialdehyde化学式
CAS
1266603-47-7
化学式
C6H9O3
mdl
——
分子量
129.136
InChiKey
PNPPVRALIYXJBW-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.5
  • 重原子数:
    9
  • 可旋转键数:
    4
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    57.2
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    参考文献:
    名称:
    The Metabolism of Cyclohexanol by Acinetobacter NCIB 9871
    摘要:
    Acinetobacter NCIB 9871 通过选择性培养基在环己醇上分离出来,并且仅以该化合物为唯一的碳源来源生长。其生长谱系有限,无法在各种替代的环烷醇和酮类上生长。以环己醇为生长底物的细胞,其底物的氧化速率为每毫克干重每小时 230 μl 的 O2,同时消耗 5.65 μmol 的 O2/μmol 底物。环己酮的氧化速率相似,但每个 μmol 消耗 4.85 μmol 的 O2。1-oxa-2-oxocycloheptane 和 6-羟基己酸的氧化速率相同,均为每毫克干重每小时 44 μl 的 O2,而己二酸未被氧化。细胞提取物的研究揭示了环己醇、6-羟基己酸和 6-氧代己酸的诱导型脱氢酶的存在,以及一种单加氧酶,其与一种乳酸苷酶结合,将环己酮转化为 6-羟基己酸。因此,该单加氧酶被推测为形成内酯的类型,而将环己醇转化为己二酸的途径;环己醇 → 环己酮 → 1-oxa-2-oxocycloheptane → 6-羟基己酸 → 6-氧代己酸 →己二酸;其中的关键中间体已通过色谱法鉴定,与 Nocardia globerula CL1 氧化环己醇的途径相同。
    DOI:
    10.1111/j.1432-1033.1975.tb20968.x
  • 作为产物:
    参考文献:
    名称:
    Rh催化末端和内部烯烃加氢甲酰化反应选择性的精确超分子控制
    摘要:
    在这项研究中,我们报告了一系列 DIMPhos 配体 L1-L3,双齿磷配体,配有完整的阴离子结合位点(DIM 口袋)。配位研究表明,这些配体以双齿方式与铑中心结合。在加氢甲酰化条件下的实验证实了单核氢化双羰基铑配合物的形成,这些配合物通常被认为在加氢甲酰化中具有活性。形成的金属配合物仍然与配体结合位点的阴离子物质强结合,而不影响金属配位球。DIMPhos 的这些双功能特性通过铑络合物的晶体结构进一步证明,其中醋酸根阴离子结合在配体的结合位点。催化研究表明,通过结合在配体的 DIM 口袋中进行的底物预组织导致末端和内部烯烃的加氢甲酰化具有前所未有的选择性。值得注意的是,选择性控制阴离子基团甚至可以与反应性双键相距 10 个键,这证明了这种超分子方法的潜力。对照实验证实了阴离子结合对选择性的关键作用。对决定性中间体的 DFT 研究表明,DIM 口袋中的阴离子结合限制了反应双键的旋转自由度。结
    DOI:
    10.1021/ja4046235
点击查看最新优质反应信息

文献信息

  • Regioselective Hydroformylation of Internal and Terminal Alkenes via Remote Supramolecular Control
    作者:Pim R. Linnebank、Stephan Falcão Ferreira、Alexander M. Kluwer、Joost N. H. Reek
    DOI:10.1002/chem.202000620
    日期:2020.7.2
    Regioselective catalytic transformations using supramolecular directing groups are increasingly popular as it allows for control over challenging reactions that may otherwise be impossible. In most examples the reactive group and the directing group are close to each other and/or the linker between the directing group is very rigid. Achieving control over the regioselectivity using a remote directing
    使用超分子指导基团的区域选择性催化转化正变得越来越普遍,因为它可以控制原本不可能的挑战性反应。在大多数实例中,反应性基团和导向基团彼此靠近和/或导向基团之间的连接基非常刚性。由于这种底物的构象自由度大,使用具有柔性接头的远程指导基团来实现对区域选择性的控制明显更具挑战性。在本文中,我们报告了含有中性羧酸盐受体(DIM袋)且亚磷酸酯金属结合部分与DIM袋之间的距离较大的超分子Rh-双亚磷酸酯加氢甲酰化催化剂的重新设计。首次证明了含有远端羧酸酯导向基团的内部和末端烯烃的区域选择性转化。对于在Δ-9位具有内部双键的羧酸酯底物,可以观察到区域选择性。因此,该催化剂用于以区域选择性方式加氢甲酰化天然单不饱和脂肪酸(MUFA),形成过量的10-甲酰基产物(10-甲酰基/ 9-甲酰基产物比率为2.51),这是首次报道这种底物的区域选择性加氢甲酰化反应的研究。
  • Extended Reaction Scope of Thiamine Diphosphate Dependent Cyclohexane-1,2-dione Hydrolase: From CC Bond Cleavage to CC Bond Ligation
    作者:Sabrina Loschonsky、Tobias Wacker、Simon Waltzer、Pier Paolo Giovannini、Michael J. McLeish、Susana L. A. Andrade、Michael Müller
    DOI:10.1002/anie.201408287
    日期:2014.12.22
    2‐dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane‐1,2‐dione to 6‐oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH‐H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH‐H28A/N484A
    THDP依赖性环己烷-1,2-二酮水解酶(CDH)催化的C 环己烷-1,2-二酮的C键裂解成6-氧代己酸酯,和所述不对称苯偶姻苯甲醛和丙酮酸之间的缩合。CDH的两种反应性之一被突变实验选择性地抑制了。CDH-H28A是能够催化与c小得多 C键的形成,而对于C的能力C键裂解仍然完整。双重变体CDH-H28A / N484A表现出相反的行为,并催化将丙酮酸加到环己烷-1,2-二酮中,从而形成叔醇。形成了叔醇的几种酰胆碱,其对映体过量为54-94%。除丙酮酸外,丙酮酸甲酯和丁烷-2,3-二酮是形成CC键的另一种供体底物。因此,通过设计酶变体可以解决非常罕见的醛-酮交叉安息香反应。
  • The Metabolism of Cyclohexanol by Acinetobacter NCIB 9871
    作者:Nuala A. DONOGHUE、Peter W. TRUDGILL
    DOI:10.1111/j.1432-1033.1975.tb20968.x
    日期:1975.12
    Acinetobacter NCIB 9871 was isolated by elective culture on cyclohexanol and grows with this compound as sole source of carbon. It displays a restricted growth spectrum, being unable to grow on a wide range of alternative alicyclic alcohols and ketones. Cyclohexanol‐grown cells oxidize the growth substrate at a rate of 230 μl of O2/h per mg dry wt with the consumption of 5.65 μmot of O2/μmol substrate. Cyclohexanone is oxidized at a similar rate with the consumption of 4.85 μmol of O2/μmol. 1 ‐Oxa‐2‐oxocycloheptane and 6‐hydroxyhexanoate are both oxidized at the same slow rate of 44 μl of O2/h per mg dry wt and adipate is not oxidized.Studies with cell extracts reveal the presence of inducible dehydrogenases for cyclohexanol, 6‐hydroxyhexanoate and 6‐oxohexanoate and a monooxygenase, that in conjunction with a lactonase converts cyclohexanone to 6‐hydroxyhexanoate. The monooxygenase is therefore presumed to be of the lactone‐forming type and the pathway for conversion of cyclohexanol to adipate; cyclohexanol → cyclohexanone → 1‐oxa‐2‐oxocycloheptane → 6‐hydroxyhexanoate → 6‐oxohexanoate → adipate; for which key intermediates have been identified chromatographically, is identical with the route for the oxidation of cyclohexanol by Nocardia globerula CL1.
    Acinetobacter NCIB 9871 通过选择性培养基在环己醇上分离出来,并且仅以该化合物为唯一的碳源来源生长。其生长谱系有限,无法在各种替代的环烷醇和酮类上生长。以环己醇为生长底物的细胞,其底物的氧化速率为每毫克干重每小时 230 μl 的 O2,同时消耗 5.65 μmol 的 O2/μmol 底物。环己酮的氧化速率相似,但每个 μmol 消耗 4.85 μmol 的 O2。1-oxa-2-oxocycloheptane 和 6-羟基己酸的氧化速率相同,均为每毫克干重每小时 44 μl 的 O2,而己二酸未被氧化。细胞提取物的研究揭示了环己醇、6-羟基己酸和 6-氧代己酸的诱导型脱氢酶的存在,以及一种单加氧酶,其与一种乳酸苷酶结合,将环己酮转化为 6-羟基己酸。因此,该单加氧酶被推测为形成内酯的类型,而将环己醇转化为己二酸的途径;环己醇 → 环己酮 → 1-oxa-2-oxocycloheptane → 6-羟基己酸 → 6-氧代己酸 →己二酸;其中的关键中间体已通过色谱法鉴定,与 Nocardia globerula CL1 氧化环己醇的途径相同。
  • The Metabolism of trans-Cyclohexan-1,2-diol by an Acinetobacter Species
    作者:John F. DAVEY、Peter W. TRUDGILL
    DOI:10.1111/j.1432-1033.1977.tb11373.x
    日期:1977.3
    Acinetobacter TD63 was one of some thirty organisms isolated by elective culture with trans‐cyclohexan‐1,2‐diol as sole source of carbon. The great majority of these isolates displayed the same growth spectrum as Nocardia globerula CL1 and Acinetobacter NCIB 9871 being capable of utilizing trans‐cyclohexan‐1,2‐diol, 2‐hydroxycyclohexan‐1‐one, cyclohexanol, cyclohexanone, 1‐oxa‐2‐oxocycloheptane and adipate and were assumed to use well described metabolic pathways. Acinetobacter TD63 was distinctive in being incapable of growth with cyclohexanol, cyclohexanone or 1‐oxa‐2‐oxocycloheptane and because of this it was hoped that it would display an alternative pathway for the oxidation of trans‐cyclohexan‐1,2‐diol. Studies with cell extracts have shown the presence of inducible dehydrogenase for the conversion of trans‐cyclohexan‐1,2‐diol to 2‐hydroxycyclohexan‐1‐one and cyclohexan‐1,2‐dione and of 6‐oxohexanoate to adipate. These enzymes are linked into a metabolic sequence by the action of a monooxygenase of broad specificity but efficiently capable of converting 2‐hydroxycyclohexan‐1‐one into the lactone 1‐oxa‐2‐oxo‐7‐hydroxycycloheptane that spontaneously rearranges to yield 6‐oxohexanoate. An enzyme capable of attacking cyclohexan‐1,2‐dione (mono‐enol) in the absence of an electron donor or oxygen has also been detected. Evidence has been presented indicating that this enzyme catalyses a keto‐enol tautomerization between cyclohexan‐1,2‐dione (mono‐enol) and cyclo‐hexan‐1,2‐dione (mono‐hydrate) and is not involved in the pathway of ring cleavage. The failure of Acinetobacter TD63 to grow with cyclohexanol, cyclohexanone or 1‐oxa‐2‐oxocycloheptane is due not to this organism possessing a distinctive metabolic sequence but to a narrow inducer specificity coupled with an inability to form a lactone hydrolase enabling it to cleave the stable 1‐oxa‐2‐oxocycloheptane which is an intermediate in the established pathway of cyclohexanol and cyclohexanone oxidation.
    Acinetobacter TD63是通过选择性培养从数十种分离的菌株中获得的,trans‐环己烷1,2-二醇是其唯一碳源。绝大多数分离株与Nocardia globerula CL1和Acinetobacter NCIB 9871具有相同的生长谱,能够利用trans‐环己烷1,2-二醇、2-羟基环己烷1-酮、环己醇、环己酮、1-氧-2-氧环庚烷和己二酸,并且假定其使用了描述清楚的代谢途径。 Acinetobacter TD63的独特之处在于其不能以环己醇、环己酮或1-氧-2-氧环庚烷为底物生长。因此,人们希望它能展示一种替代途径,用于trans‐环己烷1,2-二醇的氧化。 细胞提取物的研究表明,存在一种可诱导的脱氢酶,能够将trans‐环己烷1,2-二醇转化为2-羟基环己烷1-酮和环己烷1,2-二酮,并将6-氧己酸转化为己二酸。这些酶通过一种广谱单加氧酶的作用连接到一个代谢序列中,这种酶能够高效地将2-羟基环己烷1-酮转化为内酯1-氧-2-氧-7-羟基环庚烷,该化合物自发重排生成6-氧己酸。 还检测到一种能够攻击环己烷1,2-二酮(单烯醇)的酶,这种攻击不需要电子供体或氧气。证据表明,该酶催化环己烷1,2-二酮(单烯醇)与其单水合物之间的酮-烯醇互变异构,而不参与环裂解途径。 Acinetobacter TD63不能以环己醇、环己酮或1-氧-2-氧环庚烷为底物生长,原因不在于该菌株具有独特的代谢序列,而在于其诱导剂特异性狭窄,并且无法形成能够裂解稳定中间体1-氧-2-氧环庚烷(环己醇和环己酮氧化途径中建立的中间体)的酯酶。
  • Formation of ε-hydroxycaproate and ε-aminocaproate from N-nitrosohexamethyleneimine: Evidence that microsomal α-hydroxylation of cyclic nitrosamines may not always involve the insertion of molecular oxygen into the substrate
    作者:Lanny I. Hecker、Yves Tondeur、James G. Farrelly
    DOI:10.1016/0009-2797(84)90064-4
    日期:1984.4
    derived from molecular oxygen into NO-HEX. All of the oxygen atoms in epsilon-aminocaproate (EAC) were derived from water. Approximately half of the molecules of epsilon- hydroxycaproate ( EHC ) contain an 18O atom; thus, half of the alpha-hydroxy-NO-HEX formed incorporates a hydroxyl group derived from molecular oxygen with the remainder of the hydroxyls being from water. To account for the above
    研究了环亚硝胺,亚硝基六亚甲基亚胺(NO-HEX)微粒体代谢产物的形成。通过在18O2气氛中使用微粒体代谢该化合物来获得有关NO-HEX四种主要代谢物中氧原子来源的信息,由于插入了N-HEX,形成了β-和γ-羟基-NO-HEX。分子氧衍生成NO-HEX的羟基 ε-氨基己酸酯(EAC)中的所有氧原子均来自水。ε-羟基己酸酯(EHC)分子中大约有一半包含18O原子;因此,形成的一半α-羟基-NO-HEX掺入了源自分子氧的羟基,其余的羟基则来自水。
查看更多