New homoisoflavonoid analogues protect cells by regulating autophagy
摘要:
As a special group of naturally occurring flavonoids, homoisoflavonoids have been discovered as active components of several traditional Chinese medicines for nourishing heart and mind. In this study, twenty homoisoflavonoid analogues, including different substitution groups on rings A and B, as well as heteroaromatic B ring, were synthesized and evaluated for their cardioprotective and neuroprotective activities. In a H2O2-induced H9c2 cardiomyocytes injury assay, nine homoisoflavonoid analogues showed promising activities in the same level as the positive control, diazoxide. Six cardioprotective compounds with representative structure diversities were then evaluated for their neuroprotective effects on MPP+ induced SH-SY5Y cell injury model. Furthermore, autophagy inducing monodansylcadaverine (MDC) fluorescence staining methods and molecular docking studies indicated the action mechanism of these compounds may involve autophagy regulating via class I P13K signaling pathway. (C) 2017 Elsevier Ltd. All rights reserved.
New homoisoflavonoid analogues protect cells by regulating autophagy
摘要:
As a special group of naturally occurring flavonoids, homoisoflavonoids have been discovered as active components of several traditional Chinese medicines for nourishing heart and mind. In this study, twenty homoisoflavonoid analogues, including different substitution groups on rings A and B, as well as heteroaromatic B ring, were synthesized and evaluated for their cardioprotective and neuroprotective activities. In a H2O2-induced H9c2 cardiomyocytes injury assay, nine homoisoflavonoid analogues showed promising activities in the same level as the positive control, diazoxide. Six cardioprotective compounds with representative structure diversities were then evaluated for their neuroprotective effects on MPP+ induced SH-SY5Y cell injury model. Furthermore, autophagy inducing monodansylcadaverine (MDC) fluorescence staining methods and molecular docking studies indicated the action mechanism of these compounds may involve autophagy regulating via class I P13K signaling pathway. (C) 2017 Elsevier Ltd. All rights reserved.
Farnesoid X receptor (FXR), a nuclear receptor mainly distributed in liver and intestine, has been regarded as a potential target for the treatment of various metabolic diseases, cancer and infectious diseases related to liver. Starting from two previously identified chalcone-based FXR antagonists, we tried to increase the activity through the design and synthesis of a library containing chalcones, flavones and chromenes, based on substitution manipulation and conformation (ring closure) restriction strategy. Many chalcones and four chromenes were identified as microM potent FXR antagonists, among which chromene 11c significantly decreased the plasma and hepatic triglyceride level in KKay mice. (C) 2017 Elsevier Masson SAS. All rights reserved.
New homoisoflavonoid analogues protect cells by regulating autophagy
作者:Li-She Gan、Lin-Wei Zeng、Xiang-Rong Li、Chang-Xin Zhou、Jie Li
DOI:10.1016/j.bmcl.2017.01.086
日期:2017.3
As a special group of naturally occurring flavonoids, homoisoflavonoids have been discovered as active components of several traditional Chinese medicines for nourishing heart and mind. In this study, twenty homoisoflavonoid analogues, including different substitution groups on rings A and B, as well as heteroaromatic B ring, were synthesized and evaluated for their cardioprotective and neuroprotective activities. In a H2O2-induced H9c2 cardiomyocytes injury assay, nine homoisoflavonoid analogues showed promising activities in the same level as the positive control, diazoxide. Six cardioprotective compounds with representative structure diversities were then evaluated for their neuroprotective effects on MPP+ induced SH-SY5Y cell injury model. Furthermore, autophagy inducing monodansylcadaverine (MDC) fluorescence staining methods and molecular docking studies indicated the action mechanism of these compounds may involve autophagy regulating via class I P13K signaling pathway. (C) 2017 Elsevier Ltd. All rights reserved.