Silver-Catalyzed Oxidative Coupling of Aniline and Ene Carbonyl/Acetylenic Carbonyl Compounds: An Efficient Route for the Synthesis of Quinolines
作者:Xu Zhang、Xuefeng Xu
DOI:10.1002/asia.201402742
日期:2014.11
An efficient silver‐mediated coupling of aniline with ene carbonyl/acetylenic carbonyl compounds for the synthesis of quinolines is reported. The transformation is effective for a broad range of substrates, thus enabling the expansion of substituent architectures on the heterocyclic framework. The electronic properties of the substituents on the amine have been investigated. It was found that molecules
general copper catalyzed oxidative cyclization of ortho-vinylaniline has been accomplished employing N-tosylhydrazone as coupling partner. Various substituted quinoline derivatives of biological importance were achieved in good to excellent yield. The important features are the high functional group tolerates, up-gradation to gram scale synthesis and possible one-pot synthesis of quinoline from corresponding
A silver-mediated tandem protocol for the synthesis of quinolines involving the oxidative coupling/cyclization of N-arylimines and alkynes has been developed. We demonstrated that scenario-dependent metalation could occur either at the ortho C-H bond of an N-arylimine through protonation-driven enhancement of acidity or at the terminal C-H bond of an alkyne by virtue of the carbophilic pi-acidity of silver. The diverse set of mechanistic manifolds implemented with a single type of experimental protocol points toward the importance of stringent reactivity analysis of each individual potentially reactive molecular site. Importantly, the direct arene C H bond activation provides a unique and distinct mechanistic handle for the expansion of reactivity paradigms for silver. As expected, the protocol allows for the incorporation of both internal and terminal alkynes into the products, and in addition, both electron-withdrawing and -donating groups are tolerated on N-arylimines, thus enabling the vast expansion of substituent architectures on quinoline framework. Further, an intriguing phenomenon of structural isomerization and chemical bond cleavage has been observed for aliphatic internal alkynes.