摘要:
Receptor targeting ligands for imaging and/or therapy of cancer are limited by heterogeneity of receptor expression by tumor cells, both inter-patient and intra-patient. It is often more important for imaging agents to identify local and distant spread of disease than it is to identify a specific receptor presence. Two natural hormone peptide receptors, GRPR and Y1, are specifically interesting because expression of GRPR, Y1 or both is up-regulated in most breast cancers. We describe here the design and development of a new heterobivalent peptide ligand, truncated bombesin (t-BBN)/BVD15-DO3A, for dual-targeting of GRPR and Y1, and validation of its dual binding capability. Such a probe should be useful in imaging cells, tissues and tumors that are GRPR and/or Y1 positive and should target radioisotopes, for example, Ga-68 and/or Lu-177, to more tumors cells than single GRPR or Y1 targeted probes. A GRP targeting ligand, J-G-Abz4-QWAVGHLM-NH2 (J-G-Abz4-t-BBN), and an Y1 targeting ligand, INP-K[epsilon-J-(alpha-DO3A-epsilon-DGa)-K]-YRLRY- NH2([epsilon-J-(alpha-DO3A-epsilon-DGa)-K]-BVD-15), were synthesized and coupled to produce the heterobivalent ligand, t-BBN/BVD15-DO3A. Competitive displacement binding assays using t-BBN/BVD15-DO3A against I-125-Tyr(4)-BBN yielded an IC50 value of 18 +/- 0.7 nM for GRPR in T-47D cells, a human breast cancer cell line. A similar assay using t-BBN/BVD15-DO3A against porcine I-125-NPY showed IC50 values of 80 +/- 11 nM for Y1 receptor in MCF7 cells, another human breast cancer cell line. In conclusion, it is possible to construct a single DO3A chelate containing probe that can target both GRPR and Y1 on human tumor cells. (c) 2012 Elsevier Ltd. All rights reserved.