Preliminary evaluation of a 3H imidazoquinoline library as dual TLR7/TLR8 antagonists
摘要:
Toll-like receptors (TLR) -7 and -8 are thought to play an important role in immune activation processes underlying the pathophysiology of HIV and several clinically important autoimmune diseases. Based on our earlier findings of TLR7-antagonistic activity in a 3H imidazoquinoline, we sought to examine a pilot library of 3H imidazoquinolines for dual TLR7/8 antagonists, since they remain a poorly explored chemotype. 2D-NOE experiments were employed to unequivocally characterize the compounds. A quinolinium compound 12, bearing p-methoxybenzyl substituents on N3 and N5 positions was identified as a lead. Compound 12 was found to inhibit both TLR7 and TLR8 at low micromolar concentrations. Our preliminary results suggest that alkylation with electron-rich substituents on the quinoline N5, or conversely, elimination of the fixed charge of the resultant quaternary amine on the quinolinium may yield more active compounds. (C) 2011 Elsevier Ltd. All rights reserved.
Preliminary evaluation of a 3H imidazoquinoline library as dual TLR7/TLR8 antagonists
摘要:
Toll-like receptors (TLR) -7 and -8 are thought to play an important role in immune activation processes underlying the pathophysiology of HIV and several clinically important autoimmune diseases. Based on our earlier findings of TLR7-antagonistic activity in a 3H imidazoquinoline, we sought to examine a pilot library of 3H imidazoquinolines for dual TLR7/8 antagonists, since they remain a poorly explored chemotype. 2D-NOE experiments were employed to unequivocally characterize the compounds. A quinolinium compound 12, bearing p-methoxybenzyl substituents on N3 and N5 positions was identified as a lead. Compound 12 was found to inhibit both TLR7 and TLR8 at low micromolar concentrations. Our preliminary results suggest that alkylation with electron-rich substituents on the quinoline N5, or conversely, elimination of the fixed charge of the resultant quaternary amine on the quinolinium may yield more active compounds. (C) 2011 Elsevier Ltd. All rights reserved.
Regioisomerism-dependent TLR7 agonism and antagonism in an imidazoquinoline
作者:Nikunj M. Shukla、Matthew R. Kimbrell、Subbalakshmi S. Malladi、Sunil A. David
DOI:10.1016/j.bmcl.2009.02.100
日期:2009.4
Chronic immune activation is a hallmark of progressive HIV infection. Recent reports point to the engagement of toll-like receptor 7 (TLR7) and -9 by viral RNA as contributing to the activation of innate immune responses, which drive viral replication leading to immune exhaustion. The only known class of TLR7 antagonists is single-stranded phosphorothioate oligonucleotides, which has been demonstrated to inhibit immune activation in human and Rhesus macaque in vitro models. The availability of a selective and potent small-molecule TLR7 antagonist should allow the evaluation of potential benefits of suppression of TLR7-mediated immune activation in HIV/AIDS. Gardiquimod is a known N-1-substituted 1H-imidazoquinoline TLR7 agonist, the synthesis of which has not been published. We show that the 3H regioisomer is completely inactive as a TLR7 agonist and is weakly antagonistic. A des-amino precursor of the 3H regioisomer is more potent as a TLR7 antagonist, with an IC50 value of 7.5 mu M. This class of compound may serve as a starting point for the development of small-molecule inhibitors of TLR7. (c) 2009 Elsevier Ltd. All rights reserved.