摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

morpholin-4-yl-(9-phenoxyacridin-3-yl)methanone | 877629-45-3

中文名称
——
中文别名
——
英文名称
morpholin-4-yl-(9-phenoxyacridin-3-yl)methanone
英文别名
——
morpholin-4-yl-(9-phenoxyacridin-3-yl)methanone化学式
CAS
877629-45-3
化学式
C24H20N2O3
mdl
——
分子量
384.434
InChiKey
NJELTUMUOKNEPQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    618.9±45.0 °C(Predicted)
  • 密度:
    1.291±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    4.65
  • 重原子数:
    29.0
  • 可旋转键数:
    3.0
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.17
  • 拓扑面积:
    51.66
  • 氢给体数:
    0.0
  • 氢受体数:
    4.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    morpholin-4-yl-(9-phenoxyacridin-3-yl)methanone色胺 反应 0.25h, 以72%的产率得到{9-[2-(1H-indol-3-yl)-ethylamino]-acridin-3-yl}-morpholin-4-yl-methanone
    参考文献:
    名称:
    Identification of Compounds with Anti-West Nile Virus Activity
    摘要:
    The lack of antiviral compounds targeting flaviviruses represents a significant problem in the development of strategies for treating West Nile Virus (WNV), Dengue, and Yellow Fever infections. Using WNV high-throughput screening techniques developed in Our laboratories, we report the identification of several small molecule anti-WNV compounds belonging to four different structural classes including pyrazolines, xanthanes, acridines, and quinolines. The initial set of "hits" was further refined using cell viability-cytotoxicity assays to two 1,3,5-triaryl pyrazoline compounds: 1-(4-chlorophenylacetyl)-5-(4-nitrophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole and 1-benzoyl-5-(4-chlorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole. On the basis of their activity and favorable therapeutic indexes, these compounds were identified as viable leads and subjected to additional evaluation using an authentic viral titer reduction assay employing an epidemic strain of WNV. The compounds were further evaluated in a transient replicon reporting system to gain insight into the mechanism of action by identifying the step at which inhibition takes place during viral replication. The results indicate the pyrazolines inhibit RNA synthesis, pointing to viral RNA polymerase, RNA helicase, or other viral replication enzymes as potential targets. Progress was also made in understanding the structural requirements for activity by synthesizing a focused chemical library of substituted pyrazolines. Preliminary SAR data are presented that show the aryl-rings are required for activity against WNV. More importantly, the results indicate WNV activity is tolerant to aryl-substitutions paving the way for the design and development of much larger combinatorial libraries with varied physicochemical properties.
    DOI:
    10.1021/jm051229y
  • 作为产物:
    参考文献:
    名称:
    Identification of Compounds with Anti-West Nile Virus Activity
    摘要:
    The lack of antiviral compounds targeting flaviviruses represents a significant problem in the development of strategies for treating West Nile Virus (WNV), Dengue, and Yellow Fever infections. Using WNV high-throughput screening techniques developed in Our laboratories, we report the identification of several small molecule anti-WNV compounds belonging to four different structural classes including pyrazolines, xanthanes, acridines, and quinolines. The initial set of "hits" was further refined using cell viability-cytotoxicity assays to two 1,3,5-triaryl pyrazoline compounds: 1-(4-chlorophenylacetyl)-5-(4-nitrophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole and 1-benzoyl-5-(4-chlorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole. On the basis of their activity and favorable therapeutic indexes, these compounds were identified as viable leads and subjected to additional evaluation using an authentic viral titer reduction assay employing an epidemic strain of WNV. The compounds were further evaluated in a transient replicon reporting system to gain insight into the mechanism of action by identifying the step at which inhibition takes place during viral replication. The results indicate the pyrazolines inhibit RNA synthesis, pointing to viral RNA polymerase, RNA helicase, or other viral replication enzymes as potential targets. Progress was also made in understanding the structural requirements for activity by synthesizing a focused chemical library of substituted pyrazolines. Preliminary SAR data are presented that show the aryl-rings are required for activity against WNV. More importantly, the results indicate WNV activity is tolerant to aryl-substitutions paving the way for the design and development of much larger combinatorial libraries with varied physicochemical properties.
    DOI:
    10.1021/jm051229y
点击查看最新优质反应信息