摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-(4-aminophenyl)thieno[3,2-b]thiophene | 1399666-10-4

中文名称
——
中文别名
——
英文名称
3-(4-aminophenyl)thieno[3,2-b]thiophene
英文别名
4-Thieno[3,2-b]thiophen-6-ylaniline;4-thieno[3,2-b]thiophen-6-ylaniline
3-(4-aminophenyl)thieno[3,2-b]thiophene化学式
CAS
1399666-10-4
化学式
C12H9NS2
mdl
——
分子量
231.342
InChiKey
FRHHSIKKHWNYJB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.7
  • 重原子数:
    15
  • 可旋转键数:
    1
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    82.5
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    3-(4-aminophenyl)thieno[3,2-b]thiophene碘甲烷potassium carbonate 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 3.0h, 以65%的产率得到3-(4-(N,N-dimethylamino)phenyl)thieno[3,2-b]thiophene
    参考文献:
    名称:
    Concise Syntheses, Polymers, and Properties of 3-Arylthieno[3,2-b]thiophenes
    摘要:
    Thieno[3,2-b]thiophenes (TT), having pare-substituted phenyl groups at C-3, have been synthesized through a ring closure reaction, using P4S10, in moderate to high yields. Their absorbance studies displayed that the TT, having nitrophenyl group had the most red shift absorbance at 365 nm, which also showed the lowest optical band gap of 2.92 eV; the rest of the TTs had the absorbance between 300 and 302 nm. Cyclic voltammetry studies indicated that while all the TTs had the oxidation potentials above 1.0 V, the TT with dimethylaminophenyl group had the lowest oxidation potential of 1.33 V. The rest had the oxidation potentials between 1.6 and 1.99 V. The TTs were both electropolymerized and copolymerized with thiophene through Suzuki coupling reaction. Electropolymerized polymers indicated that while the polymer having strong electron donating dimethylaminophenyl group had the lowest oxidation potential of 0.97 V, the rest of the polymers displayed the potentials between 1.09 and 1.39 V. Their electronic band gaps varied between 1.86 and 2.46 eV. The CV-UV studies of the polymers, electro-deposited on ITO, showed absorbance maxima between 431 and 468 nm, and the lowest optical band gap was observed with the polymer having methoxyphenyl group (1.99 eV). The rest of the polymers had the optical band gaps between 2.05 and 2.19 eV. Regarding the copolymers, the one with methoxyphenyl group had the lowest oxidation potential of 0.75 V. They displayed absorption and emission maxima between 325 and 445 and 454-564 nm, respectively. Their optical and electronic band gaps varied between 2.0 and 2.5 eV. As the copolymer having strong electron donating methoxyphenyl group had the highest quantum yield, 0.64 eV, the one with strong electron withdrawing nitrophenyl group had the lowest quantum yield of 0.003 eV.
    DOI:
    10.1021/ma301604e
  • 作为产物:
    描述:
    1-(4-nitrophenyl)-2-(thiophen-3-ylthio)ethanone 在 盐酸tetraphosphorus decasulfide铁粉对甲苯磺酸 作用下, 以 乙醇甲苯 为溶剂, 反应 5.0h, 生成 3-(4-aminophenyl)thieno[3,2-b]thiophene
    参考文献:
    名称:
    Concise Syntheses, Polymers, and Properties of 3-Arylthieno[3,2-b]thiophenes
    摘要:
    Thieno[3,2-b]thiophenes (TT), having pare-substituted phenyl groups at C-3, have been synthesized through a ring closure reaction, using P4S10, in moderate to high yields. Their absorbance studies displayed that the TT, having nitrophenyl group had the most red shift absorbance at 365 nm, which also showed the lowest optical band gap of 2.92 eV; the rest of the TTs had the absorbance between 300 and 302 nm. Cyclic voltammetry studies indicated that while all the TTs had the oxidation potentials above 1.0 V, the TT with dimethylaminophenyl group had the lowest oxidation potential of 1.33 V. The rest had the oxidation potentials between 1.6 and 1.99 V. The TTs were both electropolymerized and copolymerized with thiophene through Suzuki coupling reaction. Electropolymerized polymers indicated that while the polymer having strong electron donating dimethylaminophenyl group had the lowest oxidation potential of 0.97 V, the rest of the polymers displayed the potentials between 1.09 and 1.39 V. Their electronic band gaps varied between 1.86 and 2.46 eV. The CV-UV studies of the polymers, electro-deposited on ITO, showed absorbance maxima between 431 and 468 nm, and the lowest optical band gap was observed with the polymer having methoxyphenyl group (1.99 eV). The rest of the polymers had the optical band gaps between 2.05 and 2.19 eV. Regarding the copolymers, the one with methoxyphenyl group had the lowest oxidation potential of 0.75 V. They displayed absorption and emission maxima between 325 and 445 and 454-564 nm, respectively. Their optical and electronic band gaps varied between 2.0 and 2.5 eV. As the copolymer having strong electron donating methoxyphenyl group had the highest quantum yield, 0.64 eV, the one with strong electron withdrawing nitrophenyl group had the lowest quantum yield of 0.003 eV.
    DOI:
    10.1021/ma301604e
点击查看最新优质反应信息

文献信息

  • Concise Syntheses, Polymers, and Properties of 3-Arylthieno[3,2-<i>b</i>]thiophenes
    作者:Asli Capan、Hojat Veisi、Ahmet C. Goren、Turan Ozturk
    DOI:10.1021/ma301604e
    日期:2012.10.23
    Thieno[3,2-b]thiophenes (TT), having pare-substituted phenyl groups at C-3, have been synthesized through a ring closure reaction, using P4S10, in moderate to high yields. Their absorbance studies displayed that the TT, having nitrophenyl group had the most red shift absorbance at 365 nm, which also showed the lowest optical band gap of 2.92 eV; the rest of the TTs had the absorbance between 300 and 302 nm. Cyclic voltammetry studies indicated that while all the TTs had the oxidation potentials above 1.0 V, the TT with dimethylaminophenyl group had the lowest oxidation potential of 1.33 V. The rest had the oxidation potentials between 1.6 and 1.99 V. The TTs were both electropolymerized and copolymerized with thiophene through Suzuki coupling reaction. Electropolymerized polymers indicated that while the polymer having strong electron donating dimethylaminophenyl group had the lowest oxidation potential of 0.97 V, the rest of the polymers displayed the potentials between 1.09 and 1.39 V. Their electronic band gaps varied between 1.86 and 2.46 eV. The CV-UV studies of the polymers, electro-deposited on ITO, showed absorbance maxima between 431 and 468 nm, and the lowest optical band gap was observed with the polymer having methoxyphenyl group (1.99 eV). The rest of the polymers had the optical band gaps between 2.05 and 2.19 eV. Regarding the copolymers, the one with methoxyphenyl group had the lowest oxidation potential of 0.75 V. They displayed absorption and emission maxima between 325 and 445 and 454-564 nm, respectively. Their optical and electronic band gaps varied between 2.0 and 2.5 eV. As the copolymer having strong electron donating methoxyphenyl group had the highest quantum yield, 0.64 eV, the one with strong electron withdrawing nitrophenyl group had the lowest quantum yield of 0.003 eV.
查看更多

同类化合物

锡烷,1,1'-(3,6-二辛基噻吩[3,2-B]噻吩-2,5-二基)双[1,1,1-三甲基- 苯胺,N-[3,4,6-三[(1-甲基乙基)硫代]-1H,3H-噻吩并[3,4-c]噻吩并-1-亚基]- 并四噻吩 噻吩酮[2,3-b]噻吩-2-羧酸 噻吩并[3,2-b]噻吩-2-羧酸乙酯 噻吩并[3,2-b]噻吩-2-甲腈 噻吩并[3,2-b]噻吩-2,5-二羧醛 噻吩并[3,2-b]噻吩 噻吩并[3,2-b!噻吩-2-羧酸甲酯 噻吩并[3,2-B]噻吩-2-甲酸 噻吩并[3,2-B]噻吩-2,5-二基二硼酸 噻吩[32-B]噻吩-2-硼酸频呢醇酯 噻吩[3,2-b]噻吩-2-硼酸 噻吩[3,2-B]噻吩-2,5-二羧酸 噻吩[3,2-B]噻吩,2,5-二溴-3,6-二辛基- 噻吩[2,3-B]噻吩 二噻吩并[3,2-b:2',3'-d]噻吩-2,6-二甲醛 二噻吩并[2,3-b:3',2'-d]噻吩 二噻吩[3,2-b:2',3'-d]噻吩-2-硼酸 二噻吩[3,2-B:2',3'-D]噻吩-2,5-二羧酸乙酯 二噻吩[3,2-B:2',3'-D]噻吩 6-溴噻吩并[3,2-B]噻吩-2-甲酸 5-甲酰基噻吩并[2,3-b]噻吩-2-磺酰胺 5-溴-3,4-二甲基噻吩基[2,3-b]噻吩-2-甲醛 5-氰基-3,4-二甲基噻吩并[2,3-B]噻吩-2-羧酸乙酯 5-乙酰基-3,4-二甲基噻吩并[2,3-b]噻吩-2-甲腈 4,6-二氢噻吩并[3,4-b]噻吩-2-羧酸甲酯 4,6-二氢噻吩并[3,4-b]噻吩-2-羧酸 3-溴噻吩[3,2-b]噻吩 3-溴-6-癸基噻吩并[3,2-b]噻吩-2-甲醛 3-氯噻吩并[2,3-B]噻吩-2-羧酸 3-氯噻吩基并[2,3-B]噻吩-2-羰酰氯 3-十一烷基噻吩并[3,2-b]噻吩 3,7-双十七烷基噻吩并[3,2-B]噻吩并[2',3':4,5]噻吩并[2,3-D]噻吩 3,6-双(5-溴噻吩并[3,2-b]噻吩-2-基)-2,5-双(2-辛基癸基)吡咯并[3,4-c]吡咯-1,4(2H,5H)-二酮 3,6-二辛基噻吩并[3,2-b]噻吩 3,6-二甲氧基噻吩并[3,2-b]噻吩 3,6-二溴噻吩[3,2-b]噻吩 3,6-二己基噻吩并[3,2-b]噻吩 3,5-二溴二噻吩[3,2-b:2',3'-d]噻吩 3,4-二甲基噻吩并噻吩 3,4-二甲基噻吩并[2,3-b]噻吩-2-羧酸甲酯 3,4-二甲基噻吩并[2,3-B]噻吩-2-甲醛 3,4-二甲基噻吩(2,3-b)噻吩-2,5-二羧酸 3,4-二甲基(2,3-b)-噻吩-2,5-二羧酸二乙酯 3,4-二甲基(2,3-B)并噻吩-2,5-二甲腈 3,4-二溴噻吩[2,3-b]噻吩 3,4-二氨基噻吩并[2,3-b]噻吩-2,5-二羧酸二乙酯 2-辛基-噻吩[3,2-B]并二噻吩 2-甲酰基并二噻吩