摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

sodium;N-[(2R,3R,4S,5S,6S)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]-2-methylprop-2-enimidate | 1344124-99-7

中文名称
——
中文别名
——
英文名称
sodium;N-[(2R,3R,4S,5S,6S)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]-2-methylprop-2-enimidate
英文别名
——
sodium;N-[(2R,3R,4S,5S,6S)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]-2-methylprop-2-enimidate化学式
CAS
1344124-99-7
化学式
C10H14NO7*Na
mdl
——
分子量
283.213
InChiKey
BLUXTACKWKXLDX-IGJMQZEWSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -5.78
  • 重原子数:
    19
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.6
  • 拓扑面积:
    143
  • 氢给体数:
    4
  • 氢受体数:
    8

反应信息

  • 作为产物:
    参考文献:
    名称:
    Synthesis of β-d-glucopyranuronosylamine in aqueous solution: kinetic study and synthetic potential
    摘要:
    A systematic study of the synthesis of beta-D-glucopyranuronosylamine in water is reported. When sodium D-glucuronate was reacted with ammonia and/or volatile ammonium salts in water a mixture of beta-D-glucopyranuronosylamine and ammonium N-8-D-glucopyranuronosyl carbamate was obtained at a rate that strongly depended on the experimental conditions. In general higher ammonia and/or ammonium salt concentrations led to a faster conversion of the starting sugar into intermediate species and of the latter into the final products. Yet, some interesting trends and exceptions were observed. The use of saturated ammonium carbamate led to the fastest rates and the highest final yields of beta-D-glucopyranuronosylamine/carbamate. With the exception of 1 M ammonia and 0.6 M ammonium salt, after 24 h of reaction all tested protocols led to higher yields of beta-glycosylamine/carbamate than concentrated commercial ammonia alone. The mole fraction of alpha-D-glucopyranuronosylamine/carbamate at equilibrium was found to be 7-8% in water at 30 degrees C. Concerning bis(beta-D-glucopyranuronosyl)amine, less than 3% of it is formed in all cases, with a minimum value of 0.5% in the case of saturated ammonium carbamate. Surprisingly, the reaction was consistently faster in the case of sodium D-glucuronate than in the case of D-glucose (4-8 times faster). Finally, the synthetic usefulness of our approach was demonstrated by the synthesis of three N-acyl-beta-D-glucopyranuronosylamines and one N-alkylcarbamoyl-beta-D-glucopyranuronosylamine directly in aqueous-organic solution without resorting to protective group chemistry. (C) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.carres.2011.08.018
点击查看最新优质反应信息

文献信息

  • Synthesis of β-d-glucopyranuronosylamine in aqueous solution: kinetic study and synthetic potential
    作者:Ali Ghadban、Luca Albertin、Rédéo W. Moussavou Mounguengui、Alexandre Peruchon、Alain Heyraud
    DOI:10.1016/j.carres.2011.08.018
    日期:2011.11
    A systematic study of the synthesis of beta-D-glucopyranuronosylamine in water is reported. When sodium D-glucuronate was reacted with ammonia and/or volatile ammonium salts in water a mixture of beta-D-glucopyranuronosylamine and ammonium N-8-D-glucopyranuronosyl carbamate was obtained at a rate that strongly depended on the experimental conditions. In general higher ammonia and/or ammonium salt concentrations led to a faster conversion of the starting sugar into intermediate species and of the latter into the final products. Yet, some interesting trends and exceptions were observed. The use of saturated ammonium carbamate led to the fastest rates and the highest final yields of beta-D-glucopyranuronosylamine/carbamate. With the exception of 1 M ammonia and 0.6 M ammonium salt, after 24 h of reaction all tested protocols led to higher yields of beta-glycosylamine/carbamate than concentrated commercial ammonia alone. The mole fraction of alpha-D-glucopyranuronosylamine/carbamate at equilibrium was found to be 7-8% in water at 30 degrees C. Concerning bis(beta-D-glucopyranuronosyl)amine, less than 3% of it is formed in all cases, with a minimum value of 0.5% in the case of saturated ammonium carbamate. Surprisingly, the reaction was consistently faster in the case of sodium D-glucuronate than in the case of D-glucose (4-8 times faster). Finally, the synthetic usefulness of our approach was demonstrated by the synthesis of three N-acyl-beta-D-glucopyranuronosylamines and one N-alkylcarbamoyl-beta-D-glucopyranuronosylamine directly in aqueous-organic solution without resorting to protective group chemistry. (C) 2011 Elsevier Ltd. All rights reserved.
查看更多