摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-sulfanylpentanyl 4,6-dideoxy-4-((R)-3-hydroxylbutanamido)-2-O-methyl-β-D-glucopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->2)-α-L-rhamnopyranoside | 1239318-52-5

中文名称
——
中文别名
——
英文名称
5-sulfanylpentanyl 4,6-dideoxy-4-((R)-3-hydroxylbutanamido)-2-O-methyl-β-D-glucopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->2)-α-L-rhamnopyranoside
英文别名
(3R)-N-[(2R,3S,4S,5R,6S)-6-[(2S,3R,4R,5S,6S)-2-[(2S,3R,4R,5S,6S)-2-[(2R,3R,4R,5R,6S)-4,5-dihydroxy-6-methyl-2-(5-sulfanylpentoxy)oxan-3-yl]oxy-3,5-dihydroxy-6-methyloxan-4-yl]oxy-3,5-dihydroxy-6-methyloxan-4-yl]oxy-4-hydroxy-5-methoxy-2-methyloxan-3-yl]-3-hydroxybutanamide
5-sulfanylpentanyl 4,6-dideoxy-4-((R)-3-hydroxylbutanamido)-2-O-methyl-β-D-glucopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->2)-α-L-rhamnopyranoside化学式
CAS
1239318-52-5
化学式
C34H61NO18S
mdl
——
分子量
803.92
InChiKey
VHQVQCDLEGOUSJ-NYAROESHSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -2.7
  • 重原子数:
    54
  • 可旋转键数:
    16
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.97
  • 拓扑面积:
    275
  • 氢给体数:
    10
  • 氢受体数:
    19

反应信息

  • 作为产物:
    描述:
    5-thioacetylpentyl 4,6-dideoxy-4-((R)-3-hydroxylbutanamido)-2-O-methyl-β-D-glucopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->2)-α-L-rhamnopyranoside 在 sodium methylate 作用下, 以 甲醇 为溶剂, 以96%的产率得到5-sulfanylpentanyl 4,6-dideoxy-4-((R)-3-hydroxylbutanamido)-2-O-methyl-β-D-glucopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->3)-α-L-rhamnopyranosyl-(1->2)-α-L-rhamnopyranoside
    参考文献:
    名称:
    Molecular Analysis of Carbohydrate−Antibody Interactions: Case Study Using a Bacillus anthracis Tetrasaccharide
    摘要:
    The process for selecting potent and effective carbohydrate antigens is not well-established. A combination of synthetic glycan microarray screening, surface plasmon resonance analysis, and saturation transfer difference NMR spectroscopy was used to dissect the antibody-binding surface of a carbohydrate antigen, revealing crucial binding elements with atomic-level detail. This analysis takes the first step toward uncovering the rules for structure-based design of carbohydrate antigens.
    DOI:
    10.1021/ja104027w
点击查看最新优质反应信息

文献信息

  • Molecular Analysis of Carbohydrate−Antibody Interactions: Case Study Using a <i>Bacillus anthracis</i> Tetrasaccharide
    作者:Matthias A. Oberli、Marco Tamborrini、Yu-Hsuan Tsai、Daniel B. Werz、Tim Horlacher、Alexander Adibekian、Dominik Gauss、Heiko M. Möller、Gerd Pluschke、Peter H. Seeberger
    DOI:10.1021/ja104027w
    日期:2010.8.4
    The process for selecting potent and effective carbohydrate antigens is not well-established. A combination of synthetic glycan microarray screening, surface plasmon resonance analysis, and saturation transfer difference NMR spectroscopy was used to dissect the antibody-binding surface of a carbohydrate antigen, revealing crucial binding elements with atomic-level detail. This analysis takes the first step toward uncovering the rules for structure-based design of carbohydrate antigens.
查看更多