摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-(methoxycarbonyl)-3-methyl-3(E)-pentenoic acid | 146061-20-3

中文名称
——
中文别名
——
英文名称
5-(methoxycarbonyl)-3-methyl-3(E)-pentenoic acid
英文别名
(E)-6-methoxy-3-methyl-6-oxohex-3-enoic acid
5-(methoxycarbonyl)-3-methyl-3(E)-pentenoic acid化学式
CAS
146061-20-3
化学式
C8H12O4
mdl
——
分子量
172.181
InChiKey
YGFLLBSCZQXQDL-ZZXKWVIFSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    304.9±22.0 °C(Predicted)
  • 密度:
    1.131±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    0.97
  • 重原子数:
    12.0
  • 可旋转键数:
    4.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    63.6
  • 氢给体数:
    1.0
  • 氢受体数:
    3.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    5-(methoxycarbonyl)-3-methyl-3(E)-pentenoic acidsodium hydroxide盐酸-N-乙基-Nˊ-(3-二甲氨基丙基)碳二亚胺三乙胺N,N'-二环己基碳二亚胺 作用下, 以 四氢呋喃二氯甲烷 为溶剂, 反应 2.5h, 生成 N,N,N',3-tetramethyl-3(E)-hexenediamide
    参考文献:
    名称:
    Effects of backbone rigidification on intramolecular hydrogen bonding in a family of diamides
    摘要:
    In an effort to gain insight on the balance of noncovalent forces that controls the adoption of folded conformations in small molecules, we have examined intramolecular hydrogen bond formation in a series of diamides containing a variety of conformational constraints. The intramolecularly hydrogen-bonded state of flexible diamide 2 was previously shown to be enthalpically favored by about 1.5 kcal/mol relative to the non-hydrogen-bonded state in methylene chloride. For flexible diamide 1, however, the enthalpic preference for the intramolecularly hydrogen-bonded state is only about 0.4 kcal/mol in this solvent. We describe here the synthesis and behavior of diamides 3-9, in which eight- or nine-membered-ring N-H...O=C hydrogen bonds occur in rigidified frameworks. Thermodynamic parameters were determined spectroscopically for the two-state equilibrium, non-hydrogen-bonded vs intramolecularly hydrogen-bonded, for diamides 3 and 4 in methylene chloride. The intramolecularly hydrogen-bonded state of 3 is enthalpically favored by ca. 1.6 kcal/mol. The enhanced enthalpic favorability of the internally hydrogen-bonded state of 3, relative to 1, is consistent with the MM2/MacroModel prediction that formation of an optimal hydrogen bond by 1 requires an eclipsed torsion angle in the linking segment. The intramolecularly hydrogen-bonded state of 4 is enthalpically favored by about 1.1 kcal/mol. The diminished enthalpic favorability relative to 3 may result from the poorer hydrogen-bond-accepting ability of the lactam carbonyl, relative to the acyclic tertiary carbonyl of 3. The extent of intramolecular hydrogen bonding in 5 is less than or equal to the extent in 2 at all temperatures in methylene chloride. Among the olefinic series 6-8, the addition of methyl substituents to the alkene carbons is found to promote hydrogen bond formation so effectively that 8 is predominantly hydrogen bonded in acetonitrile at room temperature, conditions under which little or no intramolecular hydrogen bonding can be detected for 1 or 6. X-ray diffraction data show that the intramolecular hydrogen bond is maintained by 8 in the solid state.
    DOI:
    10.1021/ja00056a017
  • 作为产物:
    参考文献:
    名称:
    Effects of backbone rigidification on intramolecular hydrogen bonding in a family of diamides
    摘要:
    In an effort to gain insight on the balance of noncovalent forces that controls the adoption of folded conformations in small molecules, we have examined intramolecular hydrogen bond formation in a series of diamides containing a variety of conformational constraints. The intramolecularly hydrogen-bonded state of flexible diamide 2 was previously shown to be enthalpically favored by about 1.5 kcal/mol relative to the non-hydrogen-bonded state in methylene chloride. For flexible diamide 1, however, the enthalpic preference for the intramolecularly hydrogen-bonded state is only about 0.4 kcal/mol in this solvent. We describe here the synthesis and behavior of diamides 3-9, in which eight- or nine-membered-ring N-H...O=C hydrogen bonds occur in rigidified frameworks. Thermodynamic parameters were determined spectroscopically for the two-state equilibrium, non-hydrogen-bonded vs intramolecularly hydrogen-bonded, for diamides 3 and 4 in methylene chloride. The intramolecularly hydrogen-bonded state of 3 is enthalpically favored by ca. 1.6 kcal/mol. The enhanced enthalpic favorability of the internally hydrogen-bonded state of 3, relative to 1, is consistent with the MM2/MacroModel prediction that formation of an optimal hydrogen bond by 1 requires an eclipsed torsion angle in the linking segment. The intramolecularly hydrogen-bonded state of 4 is enthalpically favored by about 1.1 kcal/mol. The diminished enthalpic favorability relative to 3 may result from the poorer hydrogen-bond-accepting ability of the lactam carbonyl, relative to the acyclic tertiary carbonyl of 3. The extent of intramolecular hydrogen bonding in 5 is less than or equal to the extent in 2 at all temperatures in methylene chloride. Among the olefinic series 6-8, the addition of methyl substituents to the alkene carbons is found to promote hydrogen bond formation so effectively that 8 is predominantly hydrogen bonded in acetonitrile at room temperature, conditions under which little or no intramolecular hydrogen bonding can be detected for 1 or 6. X-ray diffraction data show that the intramolecular hydrogen bond is maintained by 8 in the solid state.
    DOI:
    10.1021/ja00056a017
点击查看最新优质反应信息

同类化合物

(±)17,18-二HETE (±)-辛酰肉碱氯化物 (Z)-5-辛烯甲酯 (Z)-4-辛烯酸 (R)-甲羟戊酸锂盐 (R)-普鲁前列素,游离酸 (R)-3-烯丙氧基-1,2-丙二醇 (R,R)-半乳糖苷 (E)-4-庚烯酸 (E)-4-壬烯酸 (E)-4-十一烯酸 (9Z,12E)-十八烷二烯酸甲酯 (6E)-8-甲基--6-壬烯酸甲基酯-d3 (5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (5β)-17,20:20,21-双[亚甲基双(氧基)]孕烷-3-酮 (5α)-2′H-雄甾-2-烯并[3,2-c]吡唑-17-酮 (3β,20S)-4,4,20-三甲基-21-[[[三(异丙基)甲硅烷基]氧基]-孕烷-5-烯-3-醇-d6 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (3R,6S)-rel-8-[2-(3-呋喃基)-1,3-二氧戊环-2-基]-3-羟基-2,6-二甲基-4-辛酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (25S)-δ7-大发酸 (20R)-孕烯-4-烯-3,17,20-三醇 (1aR,4E,7aS,8R,10aS,10bS)-8-[((二甲基氨基)甲基]-2,3,6,7,7a,8,10a,10b-八氢-1a,5-二甲基-氧杂壬酸[9,10]环癸[1,2-b]呋喃-9(1aH)-酮 (11β,17β)-11-[4-({5-[(4,4,5,5,5-五氟戊基)磺酰基]戊基}氧基)苯基]雌二醇-1,3,5(10)-三烯-3,17-二醇 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙胆二糖 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸衍生物1 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸溴乙酯 齐墩果酸二甲胺基乙酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI)