摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-Ethyl-3-pent-1-ynylquinoline | 1607440-27-6

中文名称
——
中文别名
——
英文名称
4-Ethyl-3-pent-1-ynylquinoline
英文别名
——
4-Ethyl-3-pent-1-ynylquinoline化学式
CAS
1607440-27-6
化学式
C16H17N
mdl
——
分子量
223.318
InChiKey
MOMPRLWSDOXMLY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.7
  • 重原子数:
    17
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.31
  • 拓扑面积:
    12.9
  • 氢给体数:
    0
  • 氢受体数:
    1

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-Ethyl-3-pent-1-ynylquinoline 在 platinum on activated charcoal 、 氢气 作用下, 以 乙醇 为溶剂, 20.0 ℃ 、344.75 kPa 条件下, 反应 1.0h, 生成 4-Ethyl-3-pentylquinoline
    参考文献:
    名称:
    Structure-Based Design of Novel Human Toll-like Receptor 8 Agonists
    摘要:
    AbstractToll‐like receptor (TLR)‐8 agonists activate adaptive immune responses by inducing robust production of T helper 1‐polarizing cytokines, suggesting that TLR8‐active compounds might be promising candidate vaccine adjuvants. Recently, a C2‐butyl furo[2,3‐c]quinoline was reported with purely TLR8 agonistic activity. This compound was successfully co‐crystallized with the human TLR8 ectodomain, and the co‐crystal structure revealed ligand‐induced reorganization of the binding pocket of TLR8. The loss of a key hydrogen bond between the oxygen atom of the furanyl ring of the agonist and Thr 574 in TLR8 suggested that the furan ring is dispensable. Employing a disconnection strategy, 3‐ and 4‐substituted aminoquinolines were investigated. Focused structure‐based ligand design studies led to the identification of 3‐pentyl‐quinoline‐2‐amine as a novel, structurally simple, and highly potent human TLR8‐specific agonist (EC50=0.2 μM). Preliminary evaluation of this compound in ex vivo human blood assay systems revealed that it retains prominent cytokine‐inducing activity. Together, these results indicate the suitability of this compound as a novel vaccine adjuvant, warranting further investigation.
    DOI:
    10.1002/cmdc.201300573
  • 作为产物:
    描述:
    参考文献:
    名称:
    Structure-Based Design of Novel Human Toll-like Receptor 8 Agonists
    摘要:
    AbstractToll‐like receptor (TLR)‐8 agonists activate adaptive immune responses by inducing robust production of T helper 1‐polarizing cytokines, suggesting that TLR8‐active compounds might be promising candidate vaccine adjuvants. Recently, a C2‐butyl furo[2,3‐c]quinoline was reported with purely TLR8 agonistic activity. This compound was successfully co‐crystallized with the human TLR8 ectodomain, and the co‐crystal structure revealed ligand‐induced reorganization of the binding pocket of TLR8. The loss of a key hydrogen bond between the oxygen atom of the furanyl ring of the agonist and Thr 574 in TLR8 suggested that the furan ring is dispensable. Employing a disconnection strategy, 3‐ and 4‐substituted aminoquinolines were investigated. Focused structure‐based ligand design studies led to the identification of 3‐pentyl‐quinoline‐2‐amine as a novel, structurally simple, and highly potent human TLR8‐specific agonist (EC50=0.2 μM). Preliminary evaluation of this compound in ex vivo human blood assay systems revealed that it retains prominent cytokine‐inducing activity. Together, these results indicate the suitability of this compound as a novel vaccine adjuvant, warranting further investigation.
    DOI:
    10.1002/cmdc.201300573
点击查看最新优质反应信息

文献信息

  • Toll-Like Receptor 8 Agonists
    申请人:David Sunil Abraham
    公开号:US20160347715A1
    公开(公告)日:2016-12-01
    Compounds described herein can be used for therapeutic purposes. The compounds can be TLR agonists, such as TLR8 agonists. The compounds can be included in pharmaceutical compositions and used for therapies were being a TLR8 agonist is useful. The pharmaceutical compositions can include any ingredients, such as carries, diluents, excipients, fillers or the like that are common in pharmaceutical compositions. The compounds can be those illustrated or described herein as well as derivative thereof, prodrug thereof, salt thereof, or stereoisomer thereof, or having any chirality at any chiral center, or tautomer, polymorph, solvate, or combinations thereof. As such, the compounds can be used as adjuvants in vaccines as well as for other therapeutic purposes described herein. The compounds can have any one of the formulae described herein or derivative thereof.
查看更多