摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

碘 | 7553-56-2

中文名称
中文别名
碘浓缩液;碘片;精碘;碘,标准液;碘粒
英文名称
iodine
英文别名
diiodine;I2;molecular iodine
碘化学式
CAS
7553-56-2
化学式
I2
mdl
——
分子量
253.809
InChiKey
PNDPGZBMCMUPRI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    113 °C (lit.)
  • 沸点:
    184 °C (lit.)
  • 密度:
    1.32 g/mL at 25 °C
  • 蒸气密度:
    9 (vs air)
  • 闪点:
    <10℃
  • 溶解度:
    与氯仿、四氯化碳、二硫化碳、环己烷、甲醇、乙酸乙酯、甲苯、苯、正己烷、丁二醇、溴乙烷、正庚烷、甘油和乙醚混溶。
  • 暴露限值:
    Ceiling 0.1 ppm (~1mg/m3) (ACGIH, MSHA, OSHA, and NIOSH); IDLH 10 ppm (NIOSH).
  • LogP:
    2.49 at 20℃
  • 物理描述:
    Violet-black crystals with a metallic luster and a sharp odor. Mp: 133.5°C, bp: 185°C. Emits toxic vapor at room conditions; vapor becomes visibly purple when its concentration builds up in a confined space. Nearly insoluble in water but very soluble in aqueous solutions of iodides.
  • 颜色/状态:
    Bluish-black scales or plates; diatomic; violet vapor
  • 气味:
    Sharp characteristic odor.
  • 味道:
    Sharp, acrid
  • 蒸汽密度:
    6.75 g/L at 101.3 MPa, 185 °C
  • 蒸汽压力:
    2.33X10-1 mm Hg at 25 °C
  • 稳定性/保质期:
    碘蒸气强烈刺激眼睛及呼吸器官,长时间接触碘或吸入碘蒸气将造成损害。工作人员应做好全面防护,并确保工作现场有良好的通风条件,以防止空气中碘含量超过0.001mg/L。精制过程应在密闭的搪瓷釜中进行。
  • 分解:
    When heated to decomposition it emits toxic fumes of /hydrogen iodide/ and various iodine compounds.
  • 粘度:
    2.27 cP at 116 °C
  • 腐蚀性:
    Vapor is corrosive
  • 汽化热:
    164.45 J/g
  • 电离电位:
    9.31 eV
  • 气味阈值:
    Odor low= 9.00 mg/cu m; Odor high= 9.00 mg/cu m; Irritating Concn= 2.0 mg/cu m
  • 折光率:
    Index of refraction: 3.34

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    2
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
食物在消化道中迅速将碘转化为相对无害的碘化物,从而使碘失去活性。
Food present in the digestive tract rapidly inactivates iodine by converting it to comparatively harmless iodide.
来源:Hazardous Substances Data Bank (HSDB)
代谢
吸入的甲基碘和分子碘(I2)会迅速转化为碘化物。/甲基碘和碘/
Inhaled methyl iodide and molecular iodine (I2) are rapidly converted to iodide. /Methyl iodide and iodine/
来源:Hazardous Substances Data Bank (HSDB)
代谢
吞服的分子碘(I2)被转化为碘化物。
Ingested molecular iodine (I2) is converted to iodide.
来源:Hazardous Substances Data Bank (HSDB)
代谢
碘可以通过摄入、吸入或皮肤接触进入人体。在人体内,碘和碘化物在甲状腺中积累,用于产生甲状腺激素T4和T3。甲状腺中的碘化物会与蛋白质甲状腺球蛋白结合,形成与酪氨酸残基的共价复合物。甲状腺球蛋白的碘化由酶甲状腺过氧化物酶催化。碘化反应发生在甲状腺滤泡细胞-腔隙界面,包括碘化物氧化形成反应中间体,甲状腺球蛋白中形成一碘酪氨酸和二碘酪氨酸残基,以及碘化酪氨酸残基的耦联形成T4(两个二碘酪氨酸残基的耦联)或T3(一个一碘酪氨酸和一个二碘酪氨酸残基的耦联)。 甲状腺外碘的主要代谢途径涉及T4和T3的分解代谢,包括脱碘反应、甲状腺素的醚键断裂、甲状腺素侧链的氧化脱氨和脱羧,以及甲状腺素上酚羟基与葡萄糖醛酸和硫酸的共轭。吸收的碘主要通过尿液和粪便排出,但也会通过乳汁、呼出的空气、汗液和眼泪排出。
Iodine can enter the body following ingestion, inhalation, or dermal exposure. In the body, iodine and iodide accumulates in the thyroid gland, where it is used for producing the thyroid hormones T4 and T3. Iodide in the thyroid gland is incorporated into a protein, thyroglobulin, as covalent complexes with tyrosine residues. The iodination of thyroglobulin is catalyzed by the enzyme thyroid peroxidase. The iodination reactions occur at the follicular cell-lumen interface and consist of the oxidation of iodide to form a reactive intermediate, the formation of monoiodotyrosine and diiodotyrosine residues in thyroglobulin, and the coupling of theiodinated tyrosine residues to form T4 (coupling of two diiodotyrosine residues) or T3 (coupling of a monoiodotyrosine and diiodotyrosine residue) in thyroglobulin. The major pathways of metabolism of iodine that occur outside of the thyroid gland involve the catabolism of T4 and T3, and include deiodination reactions, ether bond cleavage of thyronine, oxidative deamination and decarboxylation of the side chain of thyronine, and conjugation of the phenolic hydroxyl group on thyronine with glucuronic acid and sulfate. Absorbed iodine is excreted primarily in the urine and feces, but is also excreted in breast milk, exhaled air, sweat, and tears. (L1844)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别:碘用作消毒剂和消毒产品。碘是蓝灰黑色的固体板或小晶体,具有金属光泽和特有的刺激性气味。它溶于水、酒精、四氯化碳、氯仿、醚、甘油。在强水溶液中极易溶解碘化物。在酒精、醚或碘化物水溶液中,溶液呈红棕色。在氯仿、四氯化碳或二硫化碳中呈紫色。适应症:在许多国家,烹饪用盐被碘化以防止甲状腺肿大。在甲状腺功能亢进症的术前治疗中,为了产生适合手术的坚实质地的甲状腺,它避免了增加血管和脆性,从而增加了出血风险。在甲状腺危象的立即治疗中。其强大的杀菌作用用于手术前消毒未破损的皮肤。碘也可以用作弱溶液,用于小伤口和擦伤的急救治疗,但它会迅速与组织物质结合而失效,从而延迟愈合。它已被局部应用于治疗单纯疱疹。碘已用于治疗树枝状角膜炎。在紧急情况下,碘用于饮用水的净化。强碘溶液:(卢戈尔溶液)用于治疗许多需要碘离子作用的疾病,如甲状腺功能亢进症、角膜硬化、与过度角化相关的角膜炎。含碘溶液用作放射性诊断的对比剂。碘化钾已用作粘液溶解剂。放射性同位素:放射性碘在治疗甲状腺功能亢进症和诊断甲状腺功能紊乱方面得到了最广泛的应用。使用最多的是钠碘-131。钠碘I-123可用于扫描目的。人类暴露:主要风险和靶器官:浓缩碘具有腐蚀性。急性接触高浓度碘的主要风险主要是由于碘对整个胃肠道的腐蚀性作用和由此产生的休克。如果发生破裂,可能会发展成纵隔炎或腹膜炎。靶器官是咽喉、喉和食道的粘膜对于浓缩碘,甲状腺对于稀释形式作为系统性影响。在家庭可获得的量中,碘不是毒性常见的原因。临床效应总结:摄入碘可能导致腐蚀性效应,如声门水肿、窒息、吸入性肺炎、肺水肿和休克,以及呕吐和血性腹泻。急性碘摄入后出现的CNS、心血管和肾毒性似乎是由于腐蚀性胃肠炎和由此产生的休克。严重中毒后,可能会出现呕吐、低血压和循环衰竭。眼睛:眼睛暴露可能导致严重的眼部烧伤。心血管:心动过速、低血压和循环衰竭可能是由于摄入浓缩腐蚀性碘溶液。呼吸系统:吸入碘蒸气可能导致严重的肺部刺激,导致肺水肿。声门水肿和肺水肿也口服摄入的结果。神经系统:严重中毒后,可能会出现头痛、眩晕、谵妄和昏迷。胃肠道:摄入后,可能会出现严重的腐蚀性食管炎和胃肠炎,表现为呕吐、腹痛和腹泻。呕吐物如果胃中有淀粉,会呈蓝色。可能会有金属味道。皮肤病学:强碘溶液的皮肤应用可能导致烧伤。慢性摄入可能导致碘病,表现为痤疮样皮肤病变和其他皮肤疹。皮肤吸收可能是显著的,并导致系统症状和死亡。内分泌系统:报告了甲状腺功能减退症和甲状腺功能亢进症。免疫学:可能会出现过敏反应,包括血管神经性水肿和/或血清病样反应。禁忌症:在怀孕和哺乳期间不应定期服用碘制剂。因为碘可能在闭合的皮肤上造成烧伤,所以用碘处理的伤口应该用轻绷带覆盖。由于碘和碘化物会影响甲状腺,服用此类制剂可能会干扰甲状腺功能测试。碘化钾不应在青春期患者中使用,因为它可能诱发痤疮和对甲状腺的影响。不应给对碘化合物有过敏史的病人使用碘或碘化物。进入途径口服:人类可以通过意外或自杀性中毒发生碘化物化合物的毒性效应。报告了由于摄入海藻、粘液溶解剂或X射线对比剂导致的碘化合物毒性效应。吸入:在工业暴露于碘蒸气时,它将从肺部吸收并在体内转化为碘化物。皮肤:局部碘(尤其是多次应用)可以吸收,导致毒性效应。眼睛:眼药水可能导致系统毒性效应。parenteral:对比剂。按暴露途径吸收:口服:碘似乎通过与胃肠道内容物结合而失活。由于碘迅速转化为碘化物,吸收不良。吸入:碘从肺部吸收,在体内转化为碘化物。肺吸收蒸气可能导致系统中毒。皮肤:只有非常少量的碘通过完整的皮肤吸收。碘可以通过伤口和擦伤吸收。通过裸露皮肤、褥疮、粘膜表面具有高吸收能力(阴道)或大面积完整皮肤,吸收增强。按暴露途径分布:口服:通过口腔摄入碘迅速转化为碘化物,并储存于甲状腺球蛋白中。碘主要通过碘化物形式进入血液,并纳入甲状腺球蛋白中。吸入:碘容易分布到肺部。皮肤:由于完整皮肤的吸收不良,分布不良。通过裸露皮肤,分布增强。代谢:碘是一种容易氧化的物质
IDENTIFICATION: Iodine is used as an antiseptic and disinfectant product. Iodine is blue greyish-black solid plates or small crystals with a metallic crystalline sheen with a characteristic acrid odor. It is soluble in water, of alcohol, carbon tetrachloride, chloroform, ether, of glycerol. Very readily soluble in strong aqueous solutions of iodides. A solution in alcohol, ether, or aqueous solutions of iodides is reddish-brown. In chloroform, carbon tetrachloride, or carbon disulfide it is violet-colored. Indications: In many countries culinary salt is iodized to prevent the development of goitre. In the pre-operative treatment of thyrotoxicosis to produce a thyroid gland of firm texture suitable for operation, it avoids the increased vascularity and friability of the gland with increased risk of hemorrhage. In the immediate treatment of thyrotoxic crisis. Its powerful bactericidal action is used for disinfecting unbroken skin before operation. Iodine may also be employed as a weak solution for the first-aid treatment of small wounds and abrasions, but it is rapidly inactivated by combining with tissue substances, and so delays healing. It has been applied topically in the treatment of herpes simplex. Iodine has been used in the treatment of dendritic keratitis. Iodine has been used in the purification of drinking water in case of emergencies. Strong iodine solution: (Lugol's solution) used in the treatment of many conditions in which the action of iodine ion is desired such as thyrotoxicosis, keratoscleritis, keratitis associated with excessive keratin. Iodine containing solutions are used as contrast media in radio diagnosis. Potassium iodide has been used as a mucolytic agent. Radioisotopes: radioactive iodine finds its widest use in the treatment of hyperthyroidism and in the diagnosis of disorders of thyroid function. The greatest use has been made of sodium iodide iodine-131. Sodium iodide I-123 is available for scanning purposes. HUMAN EXPOSURE: Main risks and target organs: Concentrated iodine is corrosive. Main risks in acute exposure to high iodine concentrations are largely due to the highly corrosive effect of iodine on the entire gastrointestinal tract and resultant shock. If rupture occurs mediastinitis or peritonitis develop. Target organs are mucous membranes of pharynx, larynx and oesophagus for the concentrated iodine, and thyroid for the diluted form as a systemic effect. Iodine is not a frequent cause of toxicity in the amounts available in the household. Summary of clinical effects: Ingestion of iodine may cause corrosive effects such as edema of the glottis, with asphyxia, aspiration pneumonia, pulmonary edema and shock, as well as vomiting and bloody diarrhea. The CNS, cardiovascular and renal toxicity following acute iodine ingestion appear to be due to the corrosive gastroenteritis and resultant shock. Vomiting, hypotension and circulatory collapse may be noted following severe intoxication. Eye: Eye exposure may result in severe ocular burns. Cardiovascular: Tachycardia, hypotension and circulatory collapse may be due to the ingestion of concentrated corrosive iodine solutions. Respiratory: Inhalation of iodine vapour may result in severe pulmonary irritation leading to pulmonary edema. Edema of the glottis and pulmonary edema have also resulted from oral ingestion. Neurological: Headache, dizziness, delirium and stupor may be noted following severe intoxication. Gastrointestinal: A severe corrosive esophagitis and gastroenteritis characterized by vomiting, abdominal pain and diarrhea may be noted following ingestion. The vomitus is blue if starch is present in the stomach. A metallic taste may be noted. Dermatological: Dermal application of strong iodine solutions may result in burns. Chronic ingestion may result in iodism characterized from acne form skin lesions and other skin eruptions. Cutaneous absorption may be significant and result in systemic symptoms and death. Endocrine: Hypothyroidism, as well as hyperthyroidism, has been reported. Immunological: Hypersensitivity reactions including angioedema and/ or serum sickness-like reactions may be noted. Contraindications: Iodine preparations should not be taken regularly during pregnancy and lactation. Because iodine may cause burns on occluded skin, an iodine-treated wound should be covered with a light bandage. As iodine and iodides can affect the thyroid gland, the administration of such preparations may interfere with tests of thyroid functions. Potassium iodide should not be used in adolescent patients because of its potential to induce acne and its effects on the thyroid gland. Iodine or iodides should not be administered to patients with a history of hypersensitivity to such compounds. Routes of entry Oral: Toxic effects in humans can occur via accidental or suicidal poisonings. Toxic effects of iodine compounds resulting from ingestion of seaweed, mucolytic expectorants or X-ray contrast are reported. Inhalation: With industrial exposure to vapor of iodine, it will be absorbed from the lungs and converted in the body to iodide. Dermal: Topical iodine (especially with multiple applications) can be absorbed, causing toxic effects. Eye: Eye drops can cause systemic toxic effects. Parenteral: Contrast media. Absorption by route of exposure: Oral: Iodine appears to be inactivated by combination with gastrointestinal contents. Absorption is poor due to rapid conversion of iodine to iodide. Inhalation: Iodine is absorbed from the lungs, converted to iodide in the body. Pulmonary absorption of vapour may result in systemic poisoning. Dermal: Only very small quantities of iodine are absorbed through an intact skin. Iodine can be absorbed by wounds and abrasions. Enhanced absorption occurs through denuded skin, decubitus ulcers, mucosal surfaces with high absorptive capacity (vagina), or large areas of intact skin. Distribution by route of exposure: Oral: When taken by mouth iodine is rapidly converted to iodide and is stored in the thyroid as thyroglobulin. Iodine reaches the blood stream mainly in form of iodide, and it is incorporated into the thyroglobulin form in the thyroid gland. Inhalation: Iodine is readily distributed into the lungs. Dermal: Distribution is poor due to low absorption through intact skin. Enhanced distribution occurs through denuded skin. Metabolism: Iodine is an easily oxidizable substance. Food that is present in the digestive tract, will oxidize iodine to iodide which is not corrosive to the gastrointestinal tract. Elimination, by route of exposure: Iodine is excreted mainly in the urine and in smaller quantities in saliva, milk, sweat, bile and other secretions. Renal iodine clearance is related to glomerular filtration rate. Mode of action: Toxicodynamics: Local: Iodine precipitates proteins. The affected cells may be killed. The effect is similar to that of a corrosive acid. Systemic: Acute inhibition of the synthesis of iodotyrosine and iodothyronine. Pharmacodynamics: Topical: Iodine has bactericidal activity, a 1% tincture will kill 90% of bacteria in 90 seconds, a 5% tincture in 60 seconds and a 7% tincture in 15 seconds. Oral: The primary function of iodine is to control the rate of cellular oxidation through its presence in the biosynthesis of iodated thyroid hormone. Carcinogenicity: There is no evidence as to whether iodine is carcinogenic or not. However, connections have been established with deliberate or inadvertent intake of radioactive elements or their compounds that concentrate in certain organs or tissues. Thus intake of labelled iodine and derivatives concentrating in the thyroid gland, have been known to give rise to cancer in that organ. Teratogenicity: Iodides diffuse across the placenta. Infant and neonatal death from respiratory distress secondary to goitre has been reported in mothers taking iodides. Chronic topical maternal use of povidone-iodine during pregnancy has been associated with clinical and biochemical hypothyroidism in the infant. Exposure to iodine-131 can damage or ablate the developing thyroid of the human fetus. Hypothyroidism, either congenital or of late onset, has been reported in at least 5 children whose mothers were exposed to iodine-131 during pregnancy. Main adverse effects: Endocrine system effects: Iodine and iodides produce goiter, hypothyroidism as well as hyperthyroidism. These effects have also been reported in infants born to mothers who had taken iodides during pregnancy. Side effects of iodine given for radioprotection: In iodine induced goiter and iodine induced hypothyroidism, special risk groups are fetus and neonates. Iodine induced hyperthyroidism special risk group are people living in iodine deficient areas and people with a history of hyperthyroidism. Extrathyroidal side effects are gastrointestinal complaints (nausea, pain), taste abnormalities, cutaneous and mucous membrane such as irritation, rash, edema (including face and glottis), allergic like reactions such as fever, eosinophilia, serum sickness like symptoms, vasculitis. Special risk groups are patients with hypocomplementemic vasculitis. Allergic effects: Whether iodine is administered topically or systematically, iodine and iodides can give rise to allergic reactions: urticaria, angioedema, cutaneous hemorrhage or purpuras, fever, arthralgia, lymphadenopathy and eosinophila, acne form or severe eruptions. Iodism effects: A mild toxic syndrome called iodism results from repeated administration of small amount of iodine. Iodism is characterised by hyper salivation, coryza, sneezing, conjunctivitis, headache, laryngitis, bronchitis, stomatitis, parotitis, enlargement of the submaxillary glands, skin rashes and gastric upsets. In rare cases jaundice, bleeding from mucous membranes and bronchospasm may occur. Inflammatory states may be aggravated by these adverse reactions. Gastrointestinal effects: Acute effects due to ingestion of iodine are mainly due to its corrosive effects or action which arises at least in part from oxidizing potential of this element on the gastrointestinal tract. Symptoms include a metallic taste, vomiting, abdominal pain, and diarrhea. Esophageal stricture may occur if the patient survives the acute stage. Cardiovascular and respiratory effects: Death may occur due to circulatory failure, edema of the glottis resulting in asphyxia, aspiration pneumonia, or pulmonary edema. Kidney effect: Anuria may occur 1 to 3 days after exposure.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
碘化物抑制甲状腺滤泡细胞中的腺苷酸环化酶,并减少TSH诱导的细胞内cAMP的升高。这导致甲状腺球蛋白的碘化减少,以及T4和T3的生产和释放受到抑制,从而引起甲状腺功能减退。
Iodide inhibits adenylate cyclase in thyroid gland follicle cells and decreases the TSH-induced rise in intracellular cAMP. This results in decreased iodination of thyroglobulin and inhibited production and release of T4 and T3, causing hypothyroidism. (L1844)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
A4:不能分类为人类致癌物。
A4: Not classifiable as a human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌物分类
对人类不具有致癌性(未被国际癌症研究机构IARC列名)。
No indication of carcinogenicity to humans (not listed by IARC).
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 健康影响
暴露在高水平的非放射性碘和放射性碘中会损害甲状腺。甲状腺损伤可能导致身体其他部位出现影响,如皮肤、肺和生殖器官。浓缩碘具有强腐蚀性,如果吞咽可能会损害粘膜。
Exposure to high levels of nonradioactive and radioactive iodine can damage the thyroid. Damage to the thyroid gland can result in effects in other parts of your body, such as your skin, lung, and reproductive organs. Concentrated iodine is very corrosive and can damage the mucous membrane if swallowed. (L1844, L1848)
来源:Toxin and Toxin Target Database (T3DB)
吸收、分配和排泄
关于碘酸钾和碘单质等其他形式碘的胃肠道吸收情况,目前的信息非常有限。碘化合物(如I2和碘酸盐,例如NaIO3)可能在被小肠吸收之前会还原成碘化物,而且吸收可能不会完全。
Little information is available on the gastrointestinal absorption of forms of iodine other than iodide. Iodine compounds, such as I2 and iodates (e.g., NaIO3), may undergo reduction to iodide before being absorbed in the small intestine, and absorption may not be complete.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
口服碘会迅速通过尿液排出,以及少量通过唾液、乳汁、汗液、胆汁和其他分泌物排出。甲状腺中碘的储存取决于该腺体的功能状态。
Orally administered iodine is rapidly excreted in the urine and in smaller quantities in saliva, milk, sweat, bile, and other secretions. The storage of iodine in the thyroid depends upon the functional state of the gland.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
碘从肺部被吸收,在体内转化为碘化物,然后主要通过尿液排出。
Iodine is absorbed from the lung, converted to iodide in the body, and then excreted, mainly in urine.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
碘从血液中被移除,并转化为甲状腺中的有机形式。体内的游离碘微不足道。
Iodine is removed from the blood & incorporated into the organic form in the thyroid gland. Free iodine is negligible in the body.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 职业暴露限值:
    Ceiling: 0.1 ppm (1 mg/m3)
  • TSCA:
    Yes
  • 危险等级:
    8
  • 立即威胁生命和健康浓度:
    2 ppm
  • 危险品标志:
    Xn,N
  • 安全说明:
    S23,S25,S26,S61
  • 危险类别码:
    R20/21,R50
  • WGK Germany:
    2
  • 海关编码:
    2801200000
  • 危险品运输编号:
    UN 2056 3/PG 2
  • 危险类别:
    8
  • RTECS号:
    NN1575000
  • 包装等级:
    III
  • 危险标志:
    GHS02,GHS07,GHS08
  • 危险性描述:
    H312 + H332,H315,H319,H335,H372,H400
  • 危险性防范说明:
    P210,P260,P280,P305 + P351 + P338,P370 + P378,P403 + P235
  • 储存条件:
    建议将产品储存于阴凉、通风且避免阳光直射的仓库中,并确保远离热源和火种。同时,请勿与氨、碱类物质及松节油等物品接触,以防温度升高引发潜在危险甚至爆炸。

SDS

SDS:590fd47a13bc01d49b11e521fd351af5
查看
第一部分:化学品名称
化学品中文名称: 碘;碘片
化学品英文名称: Iodine;Iodine crystals
中文俗名或商品名:
Synonyms:
CAS No.: 7553-56-2
分子式: I 2
分子量: 253.82
第二部分:成分/组成信息
纯化学品 混合物
化学品名称:碘;碘片
有害物成分 含量 CAS No.
100 7553-56-2
第三部分:危险性概述
危险性类别:
侵入途径: 吸入 食入
健康危害: 本品对眼睛、皮肤和粘膜有强烈刺激作用,甚至灼伤。人的口服致死量约为2~3g。接触后可引起食欲亢进、腹泻、心率增速、中枢神经系统受抑制,过量接触可致甲状腺功能紊乱。
环境危害:
燃爆危险: 本品不燃,具刺激性。
第四部分:急救措施
皮肤接触: 立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。
眼睛接触: 立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。
吸入: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入: 饮足量温水,催吐。洗胃,导泄。就医。
第五部分:消防措施
危险特性: 受热分解放出有毒的碘化物烟气。
有害燃烧产物: 自然分解产物未知。
灭火方法及灭火剂: 干粉、水、砂土。
消防员的个体防护: 消防人员必须穿全身防火防毒服,在上风向灭火。
禁止使用的灭火剂:
闪点(℃):
自燃温度(℃):
爆炸下限[%(V/V)]:
爆炸上限[%(V/V)]:
最小点火能(mJ):
爆燃点:
爆速:
最大燃爆压力(MPa):
建规火险分级:
第六部分:泄漏应急处理
应急处理: 隔离泄漏污染区,周围设警告标志,建议应急处理人员戴好口罩、护目镜,穿工作服。不要直接接触泄漏物,用砂土吸收,倒至空旷地方深埋。小量泄漏可用硫代硫酸钠溶液冲洗,经稀释后放入废水系统。如大量泄漏,收集回收或无害处理后废弃。
第七部分:操作处置与储存
操作注意事项: 密闭操作,提供充分的局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。避免产生粉尘。避免与氨、活性金属粉末接触。搬运时要轻装轻卸,防止包装及容器损坏。配备泄漏应急处理设备。倒空的容器可能残留有害物。
储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。应与氨、活性金属粉末等分开存放,切忌混储。储区应备有合适的材料收容泄漏物。
第八部分:接触控制/个体防护
最高容许浓度: 中 国 MAC:未制订标准前苏联MAC:1mg/m3美国TLV—TWA:0.1×(10-
监测方法: 淀粉比色法
工程控制: 严加密闭,提供充分的局部排风。
呼吸系统防护: 空气中粉尘浓度超标时,必须佩戴自吸过滤式防尘口罩。紧急事态抢救或撤离时,应该佩戴空气呼吸器。
眼睛防护: 戴化学安全防护眼镜。
身体防护: 穿防毒物渗透工作服。
手防护: 戴橡胶手套。
其他防护: 工作现场严禁吸烟。注意个人清洁卫生。
第九部分:理化特性
外观与性状: 深紫色片状结晶,性脆,有金属光泽,有辛辣刺激气味。
pH:
熔点(℃): 113.5
沸点(℃): 184.4
相对密度(水=1): 4.9300
相对蒸气密度(空气=1):
饱和蒸气压(kPa): 0.133/38.7℃
燃烧热(kJ/mol):
临界温度(℃):
临界压力(MPa):
辛醇/水分配系数的对数值:
闪点(℃):
引燃温度(℃):
爆炸上限%(V/V):
爆炸下限%(V/V):
分子式: I 2
分子量: 253.82
蒸发速率:
粘性:
溶解性: 微溶于水,易溶于氯仿、乙醇、苯、二硫化碳、四氯化碳。
主要用途: 用作医药、照相材料、染化等化工原料、化学试剂及有机合成等。
第十部分:稳定性和反应活性
稳定性: 在常温常压下 稳定
禁配物: 乙醇、乙醛、乙炔、氧、硫化物、卤素、氨、镁。
避免接触的条件:
聚合危害: 不能出现
分解产物: 碘化氢、碘化物。
第十一部分:毒理学资料
急性毒性: LD50:14000 mg/kg(大鼠经口) LC50:无资料
急性中毒:
慢性中毒:
亚急性和慢性毒性:
刺激性:
致敏性:
致突变性:
致畸性:
致癌性:
第十二部分:生态学资料
生态毒理毒性:
生物降解性:
非生物降解性:
生物富集或生物积累性:
第十三部分:废弃处置
废弃物性质:
废弃处置方法:
废弃注意事项:
第十四部分:运输信息
危险货物编号:
UN编号:
包装标志:
包装类别:
包装方法: 无资料。
运输注意事项: 起运时包装要完整,装载应稳妥。运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。严禁与氨、活性金属粉末、食用化学品等混装混运。运输途中应防曝晒、雨淋,防高温。车辆运输完毕应进行彻底清扫。
RETCS号:
IMDG规则页码:
第十五部分:法规信息
国内化学品安全管理法规: 化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定。
国际化学品安全管理法规:
第十六部分:其他信息
参考文献: 1.周国泰,化学危险品安全技术全书,化学工业出版社,1997 2.国家环保局有毒化学品管理办公室、北京化工研究院合编,化学品毒性法规环境数据手册,中国环境科学出版社.1992 3.Canadian Centre for Occupational Health and Safety,CHEMINFO Database.1998 4.Canadian Centre for Occupational Health and Safety, RTECS Database, 1989
填表时间: 年月日
填表部门:
数据审核单位:
修改说明:
其他信息: 5
MSDS修改日期: 年月日

制备方法与用途

碘是一种重要的微量元素,具有多种用途。根据您提供的信息,我将总结碘的主要性质和应用领域。

碘的物理化学性质
  • 类别:易燃液体
  • 毒性分级:低毒
  • 急性毒性(以口服为例):
    • 大鼠 LD50: 14,000 mg/kg
    • 小鼠 LD50: 22,000 mg/kg
碘的生产方法

碘主要通过以下两种方法制备:

  • 离子交换法:将海带浸泡后提取,经过酸化、氧化和离子交换步骤精制得到碘。
  • 空气吹出法:利用含碘盐母液,在酸性环境下通入氯气进行氧化,再通过气体吸收技术分离出碘。
碘的主要用途
  1. 消毒杀菌:常用于医疗领域,如皮肤消毒、伤口处理等。
  2. 药物制造:是多种药物及试剂的重要原料。
  3. 食品工业:用作饲料添加剂和食品防腐剂。
  4. 化学分析与测定:在实验室中用于标定溶液浓度、测定油脂碘值及其他成分的检测。
碘的安全储存与运输
  • 应储存在通风良好且低温干燥的地方,避免接触氧化剂。
  • 运输时应注意防火防潮,并采取适当措施防止泄露和污染环境。
其他信息
  • 爆炸物危险特性:水溶液具有腐蚀性;高温下能产生有毒烟雾,燃烧时还会生成碘化物烟雾。
  • 灭火剂推荐:使用水或砂土进行灭火。
  • 职业卫生标准:根据不同国家的规定,工作场所空气中最高允许浓度(TWA)为1毫克/立方米,短时间接触容许极限(STEL)为2毫克/立方米。

总之,碘作为一种多功能的化学元素,在多个领域有着广泛的应用价值。但因其具有一定的腐蚀性和毒性特性,在使用过程中需要严格遵守安全操作规程以确保人员健康和环境安全。

上下游信息

    反应信息

    • 作为反应物:
      描述:
      在 charcoal 、 double silicate 作用下, 以 neat (no solvent) 为溶剂, 生成 sodium iodide
      参考文献:
      名称:
      Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Na: MVol., 133, page 438 - 440
      摘要:
      DOI:
    • 作为产物:
      描述:
      碘化氰 在 potassium iodide 作用下, 以 为溶剂, 生成
      参考文献:
      名称:
      碘化氰作为体积氧化剂。
      摘要:
      氰化碘已开发为氧化剂,可用于测定碘化物,亚硫酸盐,硫代硫酸盐,硫氰酸盐,砷(III),锑(III),锡(II),汞(I),铁(II),抗坏血酸和β-萘酚在稀无机酸水溶液,冰醋酸和1:1醋酸-乙酸酐混合物中,采用可视化和电位测定法进行终点检测。
      DOI:
      10.1016/0039-9140(71)80226-6
    • 作为试剂:
      描述:
      2,4,6-三羟基苯乙酮一水合物吡啶咪唑(1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloridecopper(l) iodide氢溴酸 、 sodium hydride 、 potassium carbonate 、 potassium iodide 作用下, 以 甲醇二氯甲烷N,N-二甲基甲酰胺丙酮 为溶剂, 反应 51.0h, 生成 3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-8,8-dimethyl-5-((3-methylbut-2-en-1-yl)oxy)-4H,8H-pyrano [2,3-f]chromen-4-one
      参考文献:
      名称:
      Osajin、Scandenone 及其类似物的全合成及抗炎评价
      摘要:
      本研究完成了osajin、scandenone及其类似物的全合成。关键的合成步骤包括羟醛/分子内碘醚化/消除序列反应和铃木偶联反应以组装三环核心,化学选择性炔丙基化和克莱森重排反应以获得天然化合物。此外,我们还设计合成了二十五种天然产物类似物。所有合成化合物均在脂多糖 (LPS) 刺激的 RAW264.7 巨噬细胞中筛选针对肿瘤坏死因子-α (TNF-α) 和白细胞介素 6 (IL-6) 的抗炎活性。总的来说,化合物 39e 和 39d 被认为是有希望进一步开发的先导化合物。
      DOI:
      10.3390/ph17010086
    点击查看最新优质反应信息

    文献信息

    • C–F Bond Cleavage Reactions with Beryllium, Magnesium, Gallium, Hafnium, and Thorium Halides
      作者:Fabian Dankert、H. Lars Deubner、Matthias Müller、Magnus R. Buchner、Florian Kraus、Carsten von Hänisch
      DOI:10.1002/zaac.201900297
      日期:2020.9.30
      The work describes unexpected stoichiometric C–F bond cleavage reactions of beryllium, magnesium, gallium, hafnium and thorium halides with α,α,α‐trifluorotoluene. The reaction of BeBr2 / GaBr3 or MgBr2 / GaBr3 mixtures as well as neat GaI3 with α,α,α‐trifluorotoluene in the presence of (OSi2Me4)2 (I) yields the carbenium ion containing compounds [Ph‐C(O2Si2Me4)][GaX4] (X = Br: 1, X = I/F: 2). Both
      这项工作描述了铍,镁,镓,ha和th的卤化物与α,α,α-三氟甲苯的意外化学计量CF键断裂反应。在(OSi 2 Me 4)2(I)存在下,BeBr 2 / GaBr 3或MgBr 2 / GaBr 3混合物以及纯GaI 3与α,α,α-三氟甲苯的反应产生含碳离子的化合物[ Ph‐C(O 2 Si 2 Me 4)] [GaX 4 ](X = Br:1,X = I / F:2)。成功地表征了这两种化合物,并且观察到在引入甲硅烷氧基单元的情况下的脱氟型反应。化合物1的特征还在于单晶X射线衍射分析。的转化率α,α,α三氟甲苯与BEI 2,HFI 4或的Th1 4被证明是与地层的halodefluorination型反应α,α,α -triiodotoluene(3)。首次进行了足够的NMR光谱分析和X射线晶体学表征3。
    • Methods and compositions for selectin inhibition
      申请人:Kaila Neelu
      公开号:US20050101569A1
      公开(公告)日:2005-05-12
      The present invention relates to the field of anti-inflammatory substances, and more particularly to novel compounds that act as antagonists of the mammalian adhesion proteins known as selectins. In some embodiments, methods for treating selectin mediated disorders are provided which include administration of compound of Formula I: wherein the constituent variables are defined herein.
      本发明涉及抗炎物质领域,更特别地涉及作为哺乳动物粘附蛋白拮抗剂的新化合物。在某些实施例中,提供了治疗选择素介导疾病的方法,包括给予式I的化合物: 其中组分变量在此定义。
    • The reactivity of organothallium compounds. Kinetics and mechanism of iodination of diarylthallium salts by molecular iodine in dioxane
      作者:I. F. Gun'kin、K. P. Butin
      DOI:10.1007/bf02496159
      日期:1999.3
      The kinetics and mechanism of the reactions of diarylthallium, trifluoroacetates with molecular iodine in dioxane solutions have been studied. The reaction has the overall second order with the first order with respect to each reagent. The effect of substituents in the aromatic ring on the rate constant of iodination is described by the equation logk2ρσ+(ρ=-1.60, r=0.97). The reaction is catalyzed
      研究了二芳基铊、三氟乙酸盐与分子碘在二恶烷溶液中的反应动力学和机理。对于每种试剂,该反应具有总体二阶和一阶。芳环中的取代基对碘化速率常数的影响由方程 logk2ρσ+(ρ=-1.60, r=0.97) 描述。该反应由碘离子催化。计算了二恶烷中三氟乙酸二芳基铊和三氟乙酸二(对茴香基)铊在各种溶剂中的碘化反应的活化焓和熵。已经研究了溶剂对三氟乙酸二(对茴香基)铊碘化速率常数的影响。反应机理被认为是亲电SEC过程。
    • Complexes of platinum(II), platinum(IV), rhodium(III) and iridium(III) containing orthometallated triphenylphosphine
      作者:Martin A. Bennett、Suresh K. Bhargava、Mingzhe Ke、Anthony C. Willis
      DOI:10.1039/b004908p
      日期:——
      atoms. Oxidative addition of methyl iodide or iodine to [PtC6H4(PPh2)-2}2] gives initially platinum(IV) complexes [PtI(R)C6H4(PPh2)-2}2] (R = Me or I) in which the added groups are mutually trans; in the final, stable products the added groups and the phosphorus atoms are, separately, mutually cis. Oxidative addition of bromine to [PtC6H4(PPh2)-2}2] gives initially trans-[PtBr2C6H4(PPh2)-2}2] but
      用2-LiC 6 H 4 PPh 2处理[PtCl 2(SEt 2)2 ]或[RhCl 3(SEt 2)3 ],得到四元环螯合物芳基铂(II)或芳基铑(III)络合物[ Pt C 6 H 4(P Ph 2)-2} 2 ]和[ Rh C 6 H 4(P Ph 2)-2} 3 ],而相应的[IrCl 3(SEt 2)3 ]给出了Ir-C 6 H 4(PPh 2)键断裂产生的IrCl C 6 H 4(P Ph 2)-2} 2(PPh 3)] 。[ Pt C 6 H 4(P Ph 2)-2} 2 ]的化学性质主要是由Pt–P键的不稳定性所决定的,这些键依次被配体在室温下,得到含有单齿Ç络合物6 ħ 4(PPH 2),即[铂C 6 H ^ 4(P博士2)-2} η 1 -C 6 ħ 4(PPH 2)-2}(L )] [L = PPH 3,P(OPH)3,P(OME)3或卜吨] NC和[PT
    • Toward Alkane Functionalization Effected with Cp*W(NO)(alkyl)(η<sup>3</sup>-allyl) Complexes
      作者:Scott P. Semproni、Peter M. Graham、Miriam S. A. Buschhaus、Brian O. Patrick、Peter Legzdins
      DOI:10.1021/om900307p
      日期:2009.8.10
      organometallic products Cp*W(NO)(X)(CH2SiMe3) and Cp*W(NO)(X)(CH2C6H5), respectively. Exposure of the tungsten alkyl allyl complexes to isocyanide reagents leads to the formation of complexes bearing β,γ-unsaturated η2-iminoacyl ligands that apparently arise from the migratory insertion of isocyanide into the tungsten−allyl linkages. For instance, reaction of 1 with 2,6-xylylisocyanide produces Cp*W(NO)(CH
      的Cp * W(NO)(ñ -烷基)(η 3 -烯丙基)配合物由烷烃的端子C-H键的选择性激活的结果。因此,为了开发使新形成的烷基配体官能化的方法,已经研究了该配合物家族的原型成员与一系列亲电试剂和亲核试剂的反应。在这方面研究的两个主要络合物一直的Cp * W(NO)(CH 2森达3)(η 3 -CH 2 CHCHMe)(1)1和Cp * W(NO)(CH 2 ç 6 ħ 5)(η 3 -CH 2 CHCHMe)(2)。已经发现在-60℃用氧化剂I 2处理1和2分别产生Cp * W(NO)I 2和末端官能化的ICH 2 SiMe 3和ICH 2 C 6 H 5。的氧化1由H 2 ö 2也导致过氧络合物的Cp烯丙基配体和生产已知的氧代的损失* W(O)(η 2 -O 2)(CH 2森达3)。1和2的治疗用亲电子试剂与亲电试剂得到的产物是将亲电子试剂加到反应物中σ-π扭曲的烯丙基配体的富电子末端。因此,EX类型的试剂(E
    查看更多