摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

ethyl (Z)-4-hydroxytetradec-12-en-2,7-diynoate | 152539-15-6

中文名称
——
中文别名
——
英文名称
ethyl (Z)-4-hydroxytetradec-12-en-2,7-diynoate
英文别名
——
ethyl (Z)-4-hydroxytetradec-12-en-2,7-diynoate化学式
CAS
152539-15-6
化学式
C16H22O3
mdl
——
分子量
262.349
InChiKey
ZXOVVUQPUNFJID-HYXAFXHYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    398.0±42.0 °C(predicted)
  • 密度:
    1.031±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.5
  • 重原子数:
    19
  • 可旋转键数:
    7
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.56
  • 拓扑面积:
    46.5
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Diastereoselective cycloisomerizations of enediynes via palladium catalysis
    摘要:
    Considerations of atom economy drive a search for reactions that are simple additions which, performed intramolecularly, are cycloisomerizations. Exposure of acyclic enediynes to a catalyst generated by mixing a Pd(O) complex with acetic acid normally in the presence of a phosphine ligand creates [5.6.51 and [6.6.51 tricycles with extraordinary diastereoselectivity of remote stereogenic centers. Effects of substituents on the tethers as well as the olefinic and acetylenic bonds reveal a wide tolerance of functionality. While geminal substitution facilitates the cycloisomerization, it is not required. Allylic oxygen plays a role as a regioselectivity control element. Cycloisomerization dominates over allylic ionization in such cases by proper tuning of the ligand. The mechanism of this reaction appears to vary depending upon the structure of the substrate. In the normal cases, the process involves three stages, initiation, propagation, and termination. Chemoselective initiation at the acetylenic linkage closest to one of the chain's termini occurs by hydropalladation. Propagation entails intramolecular carbametalations. Termination by beta-hydrogen elimination generates a hexatriene that undergoes high rotoselectivity in its disrotatory cyclization to generate the final product. Blocking formation of the hexatriene shuts down reaction. With substrates bearing a gamma-siloxypropiolate as the acetylenic initiator, cycloisomerization forms a tricycle with different positions of the double bonds. In contrast' to the case of the other substrates, blocking formation of a hexatriene does not shut down cycloisomerization. Invoking a novel intramolecular Diels-Alder reaction of a dienylpalladium intermediate derived from the diyne moiety with the olefin, likely assisted by coordination to palladium, accounts for our observations. The ease of availability of the acyclic substrates because of the versatility of the acetylenes combined with the high chemo-, regio-, and diastereoselectivity makes this atom-economical reaction a very practical approach for the construction of polycycles.
    DOI:
    10.1021/ja00079a033
  • 作为产物:
    参考文献:
    名称:
    Diastereoselective cycloisomerizations of enediynes via palladium catalysis
    摘要:
    Considerations of atom economy drive a search for reactions that are simple additions which, performed intramolecularly, are cycloisomerizations. Exposure of acyclic enediynes to a catalyst generated by mixing a Pd(O) complex with acetic acid normally in the presence of a phosphine ligand creates [5.6.51 and [6.6.51 tricycles with extraordinary diastereoselectivity of remote stereogenic centers. Effects of substituents on the tethers as well as the olefinic and acetylenic bonds reveal a wide tolerance of functionality. While geminal substitution facilitates the cycloisomerization, it is not required. Allylic oxygen plays a role as a regioselectivity control element. Cycloisomerization dominates over allylic ionization in such cases by proper tuning of the ligand. The mechanism of this reaction appears to vary depending upon the structure of the substrate. In the normal cases, the process involves three stages, initiation, propagation, and termination. Chemoselective initiation at the acetylenic linkage closest to one of the chain's termini occurs by hydropalladation. Propagation entails intramolecular carbametalations. Termination by beta-hydrogen elimination generates a hexatriene that undergoes high rotoselectivity in its disrotatory cyclization to generate the final product. Blocking formation of the hexatriene shuts down reaction. With substrates bearing a gamma-siloxypropiolate as the acetylenic initiator, cycloisomerization forms a tricycle with different positions of the double bonds. In contrast' to the case of the other substrates, blocking formation of a hexatriene does not shut down cycloisomerization. Invoking a novel intramolecular Diels-Alder reaction of a dienylpalladium intermediate derived from the diyne moiety with the olefin, likely assisted by coordination to palladium, accounts for our observations. The ease of availability of the acyclic substrates because of the versatility of the acetylenes combined with the high chemo-, regio-, and diastereoselectivity makes this atom-economical reaction a very practical approach for the construction of polycycles.
    DOI:
    10.1021/ja00079a033
点击查看最新优质反应信息