Guaianolide Sesquiterpene Lactones, a Source To Discover Agents That Selectively Inhibit Acute Myelogenous Leukemia Stem and Progenitor Cells
摘要:
Small molecules that can selectively target cancer stem cells (CSCs) remain rare currently and exhibit no common structural features. Here we report a series of guaianolide sesquiterpene lactones (GSLs) and their derivatives that can selectively eradicate acute myelogenous leukemia (AML) stem or progenitor cells. Natural GSL compounds arglabin, an anticancer clinical drug, and micheliolide (MCL), are able to reduce the proportion of AML stem cells (CD34(+)CD38(-)) in primary AML cells. Targeting of AML stem cells is further confirmed by a sharp reduction of colony-forming units of primary AML cells upon MCL treatment. Moreover, DMAMCL, the dimethylamino Michael adduct of MCL, slowly releases MCL in plasma and in vivo and demonstrates remarkable therapeutic efficacy in the nonobese diabetic/severe combined immunodeficiency AML models. These findings indicate that GSL is an ample source for chemical agents against AML stem or progenitor cells and that GSL is potentially highly useful to explore anti-CSC approaches.
USES OF SESQUITERPENE LACTONE COMPOUNDS AND THEIR DERIVATIVES IN DRUGS PREPARATION
申请人:ACCENDATECH
公开号:US20160367525A1
公开(公告)日:2016-12-22
The present invention relates to the uses of sesquiterpene lactone compounds and their derivatives in preparing drugs. It belongs to the field of drug technology, specifically relates to the uses of the compounds of Formula (I) in preparing the drugs, especially the uses in preparing the drugs to treat rheumatoid arthritis and treat cancers through inhibiting cancer stem cells.
Small molecules that can selectively target cancer stem cells (CSCs) remain rare currently and exhibit no common structural features. Here we report a series of guaianolide sesquiterpene lactones (GSLs) and their derivatives that can selectively eradicate acute myelogenous leukemia (AML) stem or progenitor cells. Natural GSL compounds arglabin, an anticancer clinical drug, and micheliolide (MCL), are able to reduce the proportion of AML stem cells (CD34(+)CD38(-)) in primary AML cells. Targeting of AML stem cells is further confirmed by a sharp reduction of colony-forming units of primary AML cells upon MCL treatment. Moreover, DMAMCL, the dimethylamino Michael adduct of MCL, slowly releases MCL in plasma and in vivo and demonstrates remarkable therapeutic efficacy in the nonobese diabetic/severe combined immunodeficiency AML models. These findings indicate that GSL is an ample source for chemical agents against AML stem or progenitor cells and that GSL is potentially highly useful to explore anti-CSC approaches.