摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-胍基丁醛 | 14049-14-0

中文名称
4-胍基丁醛
中文别名
——
英文名称
4-guanidinobutanal
英文别名
4-guanidinobutaraldehyde;γ-guanidino butyraldehyde;2-(4-oxobutyl)guanidine
4-胍基丁醛化学式
CAS
14049-14-0
化学式
C5H11N3O
mdl
MFCD19203507
分子量
129.162
InChiKey
VCOFTLCIPLEZKE-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.5
  • 重原子数:
    9
  • 可旋转键数:
    4
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.6
  • 拓扑面积:
    81.5
  • 氢给体数:
    2
  • 氢受体数:
    2

SDS

SDS:336430d2c4fc87f0ecc20d4690fb426d
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • Synthetic Approaches to a Challenging and Unusual Structure—An Amino-Pyrrolidine Guanine Core
    作者:Rafael Rippel、Luís Pinheiro、Mónica Lopes、Ana Lourenço、Luísa M. Ferreira、Paula S. Branco
    DOI:10.3390/molecules25040797
    日期:——
    The synthesis of an unreported 2-aminopyrrolidine-1-carboxamidine unit is here described for the first time. This unusual and promising structure was attained through the oxidative decarboxylation of amino acids using the pair of reagents, silver(I)/peroxydisulfate (Ag(I)/S2O82−) followed by intermolecular (in the case of l-proline derivative) and intramolecular trapping (in the case of acyl l-arginine)
    此处首次描述了未报告的 2-氨基吡咯烷-1-甲脒单元的合成。这种不寻常且有前途的结构是通过使用一对试剂银(I)/过二硫酸盐(Ag(I)/S2O82-),然后是分子间(在 l-脯氨酸衍生物的情况下)和分子内的试剂对氨基酸进行氧化脱羧而获得的N-亲核试剂捕获(在酰基 l-精氨酸的情况下)。l-脯氨酸方法在合成 2-氨基吡咯烷-1-甲脒衍生物方面具有更广泛的范围,而由 l-酰基精氨酸提供的分子内环化在应用时会产生更高的产率。前者允许首次合成 cernumidine,一种于 2011 年从 Solanum cernuum Vell 中分离的天然生物碱,作为其外消旋形式。
  • Deposition of new thia-containing Schiff-base iron (III) complexes onto carbon nanotube-modified glassy carbon electrodes as a biosensor for electrooxidation and determination of amino acids
    作者:Lotfali Saghatforoush、Mohammad Hasanzadeh、Nasrin Shadjou、Balal Khalilzadeh
    DOI:10.1016/j.electacta.2010.10.031
    日期:2011.1
    Multiwall carbon nanotubes (MWCNTs) were used as an immobilization matrix to incorporate an Fe (III)–Schiff base complex as an electron-transfer mediator onto a glassy carbon electrode surface. First, the preheated glassy carbon was subjected to abrasive immobilization of MWCNTs by gently rubbing the electrode surface on filter paper supporting the carbon nanotubes. Second, the electrode surface was
    多壁碳纳米管(MWCNT)用作固定基质,将Fe(III)–Schiff碱配合物作为电子转移介体掺入玻璃碳电极表面。首先,通过在支撑碳纳米管的滤纸上轻轻摩擦电极表面,对预热的玻璃碳进行MWCNT的磨料固定。其次,通过浇铸100μLFe(III)络合物溶液(ACN中为0.01 M)来修饰电极表面。水溶液中修饰电极的循环伏安图显示了一对定义明确,稳定且几乎可逆的具有表面受限特性的还原氧化还原系统。MWCNTs和Fe(III)-Schiff碱配合物独特的电子和电催化性能的组合产生了显着的协同增效作用。通过循环伏安法表征了修饰电极在pH 1–9的水溶液中的电化学行为和稳定性。表观电子传递速率常数(K s)和传递系数(a)通过循环伏安法测定,分别约为7 s -1和0.55。修饰的电极在酸性溶液中具有非同寻常的正电位,对氨基酸的氧化表现出出色的催化活性。它们还显示出在宽pH范围,快速响应时间,高灵敏度,
  • 2H NMR spectroscopy as a probe of the stereochemistry of enzymic reactions at prochiral centres
    作者:James C. Richards、Ian D. Spenser
    DOI:10.1016/s0040-4020(01)88666-x
    日期:1983.1
    In the conversion of cadaverine into Δ1-piperideine, of putrescine into Δ1-pyrroline, and of agmatine into 4-guanidinobutanal, catalyzed by hog kidney diamine oxidase (DAO) (E.C. 1.4.3.6 diamine: oxygen oxidoreductase (deaminating)), the si-H from C-1 of the substrate is removed while the re-H from C-1 of the substrate is maintained at the sp2 C atom of each of the products.
    在尸胺转化为Δ 1 -piperideine,腐胺成的Δ 1吡咯啉,和胍丁胺成4 guanidinobutanal的,催化由猪肾二胺氧化酶(DAO)(EC 1.4.3.6二胺:氧氧化还原酶(脱氨)),除去来自底物C-1的si -H,同时将来自底物C-1的re -H保持在每种产物的sp 2 C原子上。
  • Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7
    作者:Radka Končitíková、Armelle Vigouroux、Martina Kopečná、Tomáš Andree、Jan Bartoš、Marek Šebela、Solange Moréra、David Kopečný
    DOI:10.1042/bj20150009
    日期:2015.5.15

    Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu120, Arg300 and Thr302 in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.

    醛脱氢酶(ALDHs)负责生物醛中间产物的氧化以及脂质过氧化过程中产生的醛的细胞解毒。迄今为止,植物中已描述了 13 个 ALDH 家族。在本研究中,我们通过分析玉米和豌豆的 ALDH7(ZmALDH7 和 PsALDH7)以及四种玉米细胞质 ALDH(cALDH)2 异构体 RF2C、RF2D、RF2E 和 RF2F,对植物 ALDH2 和 ALDH7 家族进行了详细的生化鉴定[发现的第一个玉米 ALDH2 是一种生育力恢复剂(RF2A)]。我们报告了 ZmALDH7、RF2C 和 RF2F 的高分辨率晶体结构。ZmALDH7 的结构表明,ALDH7 家族中的三个保守残基 Glu120、Arg300 和 Thr302 位于底物结合位点,并且是该家族所特有的。我们的动力学分析表明,α-氨基己二酸半醛是赖氨酸分解代谢的中间产物,是植物 ALDH7 的首选底物。相比之下,芳香醛(包括苯甲醛、茴香醛、肉桂醛、针叶醛和山奈醛)是 cALDH2 的最佳底物。与这些结果相一致,RF2C 和 RF2F 的晶体结构显示,它们的底物结合位点相似,都是由一个主要由苯丙氨酸残基和几个非极性残基组成的芳香族簇构成。基因表达研究表明,RF2C 基因在所有器官中都有很强的表达,似乎是必不可少的,这表明该酶的关键作用肯定与以苯丙醛途径中的醛为底物形成细胞壁有关。最后,植物的 ALDH7 可能对渗透保护有重大贡献,因为它能氧化多种氨基醛,产生被称为渗透溶质的产物。
  • Structural and Functional Characterization of Plant Aminoaldehyde Dehydrogenase from Pisum sativum with a Broad Specificity for Natural and Synthetic Aminoaldehydes
    作者:Martina Tylichová、David Kopečný、Solange Moréra、Pierre Briozzo、René Lenobel、Jacques Snégaroff、Marek Šebela
    DOI:10.1016/j.jmb.2009.12.015
    日期:2010.3
    Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 angstrom resolution, respectively. Both recombinant, proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants. (C) 2009 Elsevier Ltd. All rights reserved.
查看更多