Insight into the Mechanisms of Cocrystallization of Pharmaceuticals in Supercritical Solvents
作者:Luis Padrela、Miguel A. Rodrigues、João Tiago、Sitaram P. Velaga、Henrique A. Matos、Edmundo Gomes de Azevedo
DOI:10.1021/acs.cgd.5b00200
日期:2015.7.1
Carbon dioxide has been extensively used as a green solvent medium for the crystallization of active pharmaceutical ingredients (APIs) by replacing harmful organic solvents. This work explores the mechanisms underlying a novel recrystallization method—cocrystallization with supercritical solvent (CSS)—which enables APIs cocrystallization by suspending powders in pure CO2. Six well-known APIs that form cocrystals with saccharin (SAC) were processed by CSS, namely, theophylline (TPL), indomethacin (IND), carbamazepine (CBZ), caffeine (CAF), sulfamethazine (SFZ), and acetylsalicylic acid (ASA). Pure cocrystals were obtained for TPL, IND, and CBZ (with SAC) after 2 h of CSS processing. Convection was revealed to be a determining parameter for successful cocrystallization with high-yield levels. TPL–SAC was selected as a model system to study the cocrystallization kinetics in the gas, supercritical, and liquid phases under different conditions of pressure (8–20 MPa), temperature (30 to 70 °C), and convection regimes. The solubility of each substance in CO2 was measured at the selected working conditions. TPL–SAC showed a cocrystallization rate of 2.9% min–1, two times higher than that of IND–SAC, due to the higher solubility of TPL in CO2. The cocrystallization kinetics was also improved by increasing the CO2 density, showing that cocrystallization was limited by the dissolution of cocrystal formers. Overall, the CSS process has a potential for scale-up as a novel, simple, solvent-free batch process whenever the cocrystal phase is formed in the CO2 media.
二氧化碳广泛用于作为绿色溶剂介质,替代有害有机溶剂,用于活性药物成分(A
PI)的结晶。本研究探索了一种新型重结晶方法的机制——超临界溶剂共结晶(CSS),该方法通过将粉末悬浮在纯
二氧化碳中,实现在
二氧化碳中对A
PI的共结晶。对六种与
糖精(
SAC)形成共结晶的著名A
PI进行了CSS处理,分别是:茶碱(TPL)、
吲哚美辛(IND)、
卡马西平(C
BZ)、
咖啡因(CAF)、
磺胺噻唑(SFZ)和乙酰
水杨酸(A
SA)。经过2小时的CSS处理,TPL、IND和C
BZ(与
SAC)获得了纯共结晶。对流被发现是高产率成功共结晶的重要参数。TPL–
SAC被选为模型系统,研究在不同的压力(8–20 MPa)、温度(30到70°C)和对流条件下的气体、超临界和液相中的共结晶动力学。在所选工作条件下测量了每种物质在
CO2中的溶解度。由于TPL在 中的溶解度更高,TPL–
SAC的共结晶速率为每分钟2.9%,是IND–
SAC的两倍。此外,通过提高 密度也改善了共结晶动力学,显示出共结晶受限于共结晶成分的溶解度。总体而言,CSS过程具备作为一种新型、简单、无溶剂批量处理方法的放大潜力,只要共结晶相在
二氧化碳介质中形成。