Thiazolidinone–Peptide Hybrids as Dengue Virus Protease Inhibitors with Antiviral Activity in Cell Culture
摘要:
The protease of dengue virus is a promising target for antiviral drug discovery. We here report a new generation of peptide hybrid inhibitors of dengue protease that incorporate N-substituted 5-arylidenethiazolidinone heterocycles (rhodanines and thiazolidinediones) as N-terminal capping groups of the peptide moiety. The compounds were extensively characterized with respect to inhibition of various proteases, inhibition mechanisms, membrane permeability, antiviral activity, and cytotoxicity in cell culture. A sulfur/oxygen exchange in position 2 of the capping heterocycle (thiazolidinedione-capped vs rhodanine-capped peptide hybrids) has a significant effect on these properties and activities. The most promising in vitro affinities were observed for thiazolidinedione-based peptide hybrids containing hydrophobic groups with K-i values between 1.5 and 1.8 mu M and competitive inhibition mechanisms. Rhodanine-capped peptide hybrids with hydrophobic substituents have, in correlation with their membrane permeability, a more pronounced antiviral activity in cell culture than the thiazolidinediones.
Thiazolidinone–Peptide Hybrids as Dengue Virus Protease Inhibitors with Antiviral Activity in Cell Culture
摘要:
The protease of dengue virus is a promising target for antiviral drug discovery. We here report a new generation of peptide hybrid inhibitors of dengue protease that incorporate N-substituted 5-arylidenethiazolidinone heterocycles (rhodanines and thiazolidinediones) as N-terminal capping groups of the peptide moiety. The compounds were extensively characterized with respect to inhibition of various proteases, inhibition mechanisms, membrane permeability, antiviral activity, and cytotoxicity in cell culture. A sulfur/oxygen exchange in position 2 of the capping heterocycle (thiazolidinedione-capped vs rhodanine-capped peptide hybrids) has a significant effect on these properties and activities. The most promising in vitro affinities were observed for thiazolidinedione-based peptide hybrids containing hydrophobic groups with K-i values between 1.5 and 1.8 mu M and competitive inhibition mechanisms. Rhodanine-capped peptide hybrids with hydrophobic substituents have, in correlation with their membrane permeability, a more pronounced antiviral activity in cell culture than the thiazolidinediones.
The present invention relates to compounds binding to calreticulin which selectively inhibit growth of CALR mutant cells and/or exhibit selective cytotoxicity towards CALR mutant cells, to pharmaceutical compositions comprising such compounds as well as to their use in treating diseases or conditions caused by or associated with a mutation of CALR, in particular myeloid malignancies, such as myeloproliferative neoplasms or myelodysplasia syndrome. The present invention also relates to screening assays allowing the identification of such compounds.
Thiazolidinone–Peptide Hybrids as Dengue Virus Protease Inhibitors with Antiviral Activity in Cell Culture
作者:Christoph Nitsche、Verena N. Schreier、Mira A. M. Behnam、Anil Kumar、Ralf Bartenschlager、Christian D. Klein
DOI:10.1021/jm400828u
日期:2013.11.14
The protease of dengue virus is a promising target for antiviral drug discovery. We here report a new generation of peptide hybrid inhibitors of dengue protease that incorporate N-substituted 5-arylidenethiazolidinone heterocycles (rhodanines and thiazolidinediones) as N-terminal capping groups of the peptide moiety. The compounds were extensively characterized with respect to inhibition of various proteases, inhibition mechanisms, membrane permeability, antiviral activity, and cytotoxicity in cell culture. A sulfur/oxygen exchange in position 2 of the capping heterocycle (thiazolidinedione-capped vs rhodanine-capped peptide hybrids) has a significant effect on these properties and activities. The most promising in vitro affinities were observed for thiazolidinedione-based peptide hybrids containing hydrophobic groups with K-i values between 1.5 and 1.8 mu M and competitive inhibition mechanisms. Rhodanine-capped peptide hybrids with hydrophobic substituents have, in correlation with their membrane permeability, a more pronounced antiviral activity in cell culture than the thiazolidinediones.