DNA Modifications by the ω-3 Lipid Peroxidation-Derived Mutagen 4-Oxo-2-hexenal in Vitro and Their Analysis in Mouse and Human DNA
摘要:
4-Oxo-2-hexenal (4-OHE), which forms a 2'-deoxyguanosine (dG) adduct in a model lipid peroxidation system, is mutagenic in the Ames test. It is generated by the oxidation of omega-3 fatty acids and is commonly found in dietary fats, such as fish oil, perilla oil, rapeseed oil, and soybean oil. 4-OHE also forms adducts with 2'-deoxyadenosine (dA), 2'-deoxycytidine (dC), and 5-methyl-2'-deoxycytidine (5-Me-dC) in DNA. In this study, we characterized the structures of these adducts in detail. We measured the amounts of 4-OHE-DNA adducts in mouse organs by LC/MS/MS, after 4-OHE was orally administered to mice. The 4-OHE-dA, 4-OHE-dC, 4-OHE-dG, and 4-OHE-5-Me-dC adducts were detected in stomach and intestinal DNA in the range of 0.25-43.71/10(8) bases. After the 4-OHE administration, the amounts of these DNA adducts decreased gradually over 7 days. We also detected 4-OHE-dC in human lung DNA, in the range of 2.6-5.9/10(9) bases. No difference in the 4-OHE adduct levels was detected between smokers and nonsmokers. Our results suggest that 4-OHE-DNA adducts are formed by endogenous as well as environmental lipid peroxides.
Characterization of rabbit aldose reductase-like protein with 3β-hydroxysteroid dehydrogenase activity
摘要:
In this study, we isolated the cDNA for a rabbit aldose reductase-like protein that shared an 86% sequence identity to human aldo-keto reductase (AKR)(1) 1B10 and has been assigned as AKR1B19 in the AKR superfamily. The purified recombinant AKR1B19 was similar to AKR1B10 and rabbit aldose reductase (AKR1B2) in the substrate specificity for various aldehydes and alpha-dicarbonyl compounds. In contrast to AKR1B10 and AKR1B2, AKR1B19 efficiently reduced 3-keto-5 alpha/beta-dihydro-C19/C21/C24-steroids into the corresponding 3 beta-hydroxysteroids, showing K-m of 1.3-9.1 mu M and k(cat) of 1.1-7.6 min(-1). The stereospecific reduction was also observed in the metabolism of 5 alpha- and 5 beta-dihydrotestosterones in AKR1B19-overexpressing cells. The mRNA for AKR1B19 was ubiquitously expressed in rabbit tissues, and the enzyme was co-purified with 3 beta-hydroxysteroid dehydrogenase activity from the lung. Thus, AKR1B19 may function as a 3-ketoreductase, as well as a defense system against cytotoxic carbonyl compounds in rabbit tissues. The molecular determinants for the unique 3-ketoreductase activity were investigated by replacement of Phe303 and Met304 in AKR1B19 with Gln and Ser, respectively, in AKR1B10. Single and double mutations (F303Q, M304S and F303Q/M304S) significantly impaired this activity, suggesting the two residues play critical roles in recognition of the steroidal substrate. (C) 2012 Elsevier Inc. All rights reserved.
N-Heterocyclic Carbene and Brønsted Acid Cooperative Catalysis: Asymmetric Synthesis of <i>trans</i>-γ-Lactams
作者:Xiaodan Zhao、Daniel A. DiRocco、Tomislav Rovis
DOI:10.1021/ja205714g
日期:2011.8.17
An efficient enantioselective approach to form trans-γ-lactams in up to 99% yield, 93% ee, and >20/1 dr using unactivated imines has been developed. The cyclohexyl-substituted azolium and the weak base sodium o-chlorobenzoate are most suitable for this transformation. Notably, the process involves cooperativecatalysis by an N-heterocycliccarbene and a Brønsted acid.
已经开发出一种使用未活化亚胺以高达 99% 的产率、93% 的 ee 和 >20/1 dr 的高效对映选择性方法形成反式-γ-内酰胺。环己基取代的唑鎓和弱碱邻氯苯甲酸钠最适合这种转化。值得注意的是,该过程涉及 N-杂环卡宾和布朗斯台德酸的协同催化。
Diastereoselective Total Synthesis of (±)-Schindilactone A, Part 1: Construction of the ABC and FGH Ring Systems and Initial Attempts to Construct the CDEF Ring System
strategies for the diastereoselective totalsynthesis of schindilactone A (1) are presented and methods for the synthesis of the ABC, FGH, and CDEF moieties are explored. We have established a method for the synthesis of the ABC moiety, which included both a Diels–Alder reaction and a ring‐closing metathesis as the key steps. We have also developed a method for the synthesis of the FGH moiety, which involved