SUMMARY
Mycothiol (MSH; AcCys-GlcN-Ins) is the major thiol found in
Actinobacteria
and has many of the functions of glutathione, which is the dominant thiol in other bacteria and eukaryotes but is absent in
Actinobacteria
. MSH functions as a protected reserve of cysteine and in the detoxification of alkylating agents, reactive oxygen and nitrogen species, and antibiotics. MSH also acts as a thiol buffer which is important in maintaining the highly reducing environment within the cell and protecting against disulfide stress. The pathway of MSH biosynthesis involves production of GlcNAc-Ins-P by MSH glycosyltransferase (MshA), dephosphorylation by the MSH phosphatase MshA2 (not yet identified), deacetylation by MshB to produce GlcN-Ins, linkage to Cys by the MSH ligase MshC, and acetylation by MSH synthase (MshD), yielding MSH. Studies of MSH mutants have shown that the MSH glycosyltransferase MshA and the MSH ligase MshC are required for MSH production, whereas mutants in the MSH deacetylase MshB and the acetyltransferase (MSH synthase) MshD produce some MSH and/or a closely related thiol. Current evidence indicates that MSH biosynthesis is controlled by transcriptional regulation mediated by σ
B
and σ
R
in
Streptomyces coelicolor
. Identified enzymes of MSH metabolism include mycothione reductase (disulfide reductase; Mtr), the
S
-nitrosomycothiol reductase MscR, the MSH
S
-conjugate amidase Mca, and an MSH-dependent maleylpyruvate isomerase. Mca cleaves MSH
S
-conjugates to generate mercapturic acids (AcCySR), excreted from the cell, and GlcN-Ins, used for resynthesis of MSH. The phenotypes of MSH-deficient mutants indicate the occurrence of one or more MSH-dependent
S
-transferases, peroxidases, and mycoredoxins, which are important targets for future studies. Current evidence suggests that several MSH biosynthetic and metabolic enzymes are potential targets for drugs against tuberculosis. The functions of MSH in antibiotic-producing streptomycetes and in bioremediation are areas for future study.
摘要
霉菌
硫醇(MSH;AcCys-GlcN-Ins)是放线菌中发现的主要
硫醇。
放线菌
具有
谷胱甘肽的许多功能,
谷胱甘肽是其他细菌和真核
生物中的主要
硫醇,但放线菌中却没有。
放线菌
.MSH 可作为受保护的半胱
氨酸储备,并在烷化剂、活性氧和氮物种以及抗生素的解毒过程中发挥作用。MSH 还是一种
硫醇缓冲剂,对维持细胞内的高还原性环境和抵御二
硫压力非常重要。MSH 的
生物合成途径包括:MSH 糖基转移酶(MshA)产生 GlcNAc-Ins-P,MSH
磷酸酶 MshA2(尚未确定)进行去
磷酸化,MshB 进行去乙酰化以产生 GlcN-Ins,MSH 连接酶 MshC 与 Cys 连接,MSH 合成酶(MshD)进行乙酰化以产生 MSH。对 MSH 突变体的研究表明,MSH 糖基转移酶 MshA 和 MSH 连接酶 MshC 是产生 MSH 的必要条件,而 MSH
去乙酰化酶 MshB 和乙酰转移酶(MSH 合成酶)MshD 的突变体会产生一些 MSH 和/或一种密切相关的
硫醇。目前的证据表明,MSH 的
生物合成是由σ B 介导的转录调控控制的。
B
和 σ
R
在
链霉菌中
.已确定的 MSH 代谢酶包括霉
硫酮还原酶(二
硫化物还原酶;Mtr)、σ R
S
-亚硝基
硫醇还原酶 MscR、MSH
S
-共轭酰胺酶 Mca 以及依赖 MSH 的马来酰
丙酮酸异构酶。Mca 可裂解 MSH
S
-共轭物,生成从细胞中排出的巯基酸(AcCySR)和用于重新合成 MSH 的 GlcN-Ins。MSH缺陷突变体的表型表明存在一种或多种依赖于MSH的
S
-转移酶、
过氧化物酶和肌红蛋白,这些都是未来研究的重要目标。目前的证据表明,一些 MSH
生物合成和代谢酶是抗结核药物的潜在靶点。MSH 在产生抗生素的链霉菌和
生物修复中的功能是未来研究的领域。