our research on the synthesis of non‐traditional 1,3‐bridged β‐lactams embedded into macrocycles. We synthesized 12‐ to 22‐membered bicyclic β‐lactams by the ring‐closing metathesis (RCM) of bis‐ω‐alkenyl‐3(S)‐aminoazetidinone precursors. The reactivity of 1,3‐bridged β‐lactams was estimated by the determination of the energy barrier of a concerted nucleophilic attack and lactam ring‐opening process
cleavage by β-lactamases to selectively trigger antibacterial prodrugs into the bacterial periplasm. Indeed, multidrug-resistant Gram-negative pathogens commonly produce several β-lactamases that are able to inactivate β-lactam antibiotics, our most reliable and widely used therapeutic option. The chemical structure of these prodrugs is based on a monobactam promoiety, covalently attached to the active