Highly Enantioselective Chlorination of β-Keto Esters and Subsequent SN2 Displacement of Tertiary Chlorides: A Flexible Method for the Construction of Quaternary Stereogenic Centers
摘要:
Highly enantioselective chlorination of beta-oxo esters and subsequent stereospecific substitution of tertiary chlorides are described. Enantioselective chlorination of beta-keto esters and malonates was performed using a chiral Lewis acid catalyst prepared from Cu(OTf)(2) and the newly developed spirooxazoline ligand 2 to yield the desired a-chlorinated products with high enantioselectivity (up to 98% ee). Nucleophilic substitution of the resulting chlorides proceeded smoothly to afford a variety of chiral molecules such as alpha-amino, alpha-allcylthio, and alpha-fluoro esters, without loss of enantiopurity. The results of X-ray crystallographic analysis proved that Walden inversion occurs at the chlorinated tertiary carbon center. These results supported the fact that the substitution proceeds via an S(N)2 mechanism.
Access to Both Enantiomers of α-Chloro-β-keto Esters with a Single Chiral Ligand: Highly Efficient Enantioselective Chlorination of Cyclic β-Keto Esters Catalyzed by Chiral Copper(II) and Zinc(II) Complexes of a Spiro-2,2′-bischroman-Based Bisoxazoline Li
bisoxazoline ligands (SPANbox) were found to be highly efficient in copper(II)‐ and zinc(II)‐catalyzed asymmetric chlorinations of cyclic β‐ketoesters with N‐chlorosuccinimide (NCS) as the chlorination reagent, to give the corresponding α‐chloro‐β‐ketoesters in excellent yields in 5–30 min with ee values up to 97%. The copper(II) triflate and zinc(II) triflate complexes of a single SPANbox ligand demonstrated