Synthesis of 2,6,7-trideoxy-7-C-(2,4-dichlorophenyl)-d-xylo-heptonic acid and 6-(2,4-dichlorophenyl)-d-xylo-2,3,4-trihydroxyhexanesulfonic acid
作者:János Kuszmann、Benjamin Podányi
DOI:10.1016/s0008-6215(00)90499-3
日期:1992.3
2,4-O-Benzylidene-L-xylose was converted via a Wittig reaction into Z-2,4-O-benzylidene-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hex-5-enitol (17), which, on hydrogenation, gave 5,6-dideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hexitol (33). tert-Butyldimethylsililation of the primary hydroxyl group of 33, followed by 4-methoxybenzylation, and desilylation afforded 5,6-dideoxy-6-C-(2,4-dichlorophenyl)-2,3,4-tri-O-(4-methoxybenzyl)-D-xylo-hexitol (54). A Mitsunobu-type reaction of 54 replaced HO-1 by cyanide to give, after hydrolysis and hydrogenolysis, 2,6,7-trideoxy-7-C-(2,4-dichlorophenyl)-D-xylo-heptono-1,4-lactone (55). Mesylation of 33 and then acetylation gave 2,3,4-tri-O-acetyl-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-1-O-methanesulfonyl-D-xylo-hexitol (63), which was converted via its 1-thiobenzoate into bis[1,5,6-trideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hexitol] 1,1'-disulfide (65). Acetylation of 65, followed by permanganate oxidation and deacetylation, afforded sodium 6-(2,4-dichlorophenyl)-D-xylo-2,3,4-trihydroxy-hexanesulfonate (67). Both 57 (obtained from 55 by hydrolysis with NaOH) and 67 are weak inhibitors of HMG-CoA reductase.