with the catalysis of silver(I) and Selectfluor as both the oxidant and fluorine source. This reaction is highly chemoselective, producing the decarboxylative alkylfluorination products rather than the competitive fluorination of aliphatic carboxylic acids. This practical transformation proceeds efficiently in aqueousmedia at room temperature and exhibits a large range of functional-group tolerance
The present invention relates to carbapenems and provides a compound of the formula (I) ##STR1## wherein: R.sup.1 is 1-hydroxyethyl, 1-fluoroethyl or hydroxymethyl; R.sup.2 is hydrogen or C.sub.1-4 alkyl; R.sup.3 is hydrogen or C.sub.1-4 alkyl; P.sup.1 is of the formula: ##STR2## and one or two of A,B,C,D,E,F,G and H, are nitrogen and the remainder are CH; and P is bonded to the nitrogen of the linking carbamoyl group by a carbon atom, in either ring, is substituted by the carboxy group on a carbon atom, in either ring, and is optionally further substituted, by up to three substitutents, on a carbon atom, in either ring; or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof. Processes for their preparation, intermediates in their preparation, their use as therapeutic agents and pharmaceutical compositions containing them are also described.
Method of making hydroxyalkyl amide containing reduced level of unreacted alkanolamine
申请人:Fox Brian E.
公开号:US20050107623A1
公开(公告)日:2005-05-19
A method for reacting alkanolamine with ester in the presence of a metal silicate compound and, optionally, a catalyst, to produce a hydroxyalkyl amide composition with a decreased level of alkanolamine and residual catalyst.
This disclosure provides for new catalyst systems and new methods for preparing and using the catalyst systems for generating a trimerization product. In an aspect, the new catalyst systems comprise a chromium carboxylate that is prepared by anhydrous metathesis. In another aspect, the catalyst system comprise a chromium carboxylate that is prepared by anhydrous metathesis and a metal pyrrolide compound. The catalyst systems imparts improved performance and/or reduced catalyst system cost to an olefin trimerization process.
This disclosure provides a process for making transition metal carboxylate compositions by combining in an polar aprotic first solvent a transition metal precursor and a Group 1 or Group 2 metal carboxylate under substantially acid-free and substantially anhydrous conditions, to generate a mixture comprising the transition metal carboxylate composition. Optionally, the transition metal carboxylate composition can be purified, for example, by substantially removing the first solvent provide a residue comprising the transition metal carboxylate composition, and also optionally, further by extracting the transition metal carboxylate composition from the residue with a non-coordinating second solvent to provide an extract comprising the transition metal carboxylate composition.