摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

isoglobotrihexose | 80446-87-3

中文名称
——
中文别名
——
英文名称
isoglobotrihexose
英文别名
(2S,3R,4R,5S,6R)-5-(((2S,3R,4R,5R,6R)-3,4-Dihydroxy-6-(hydroxymethyl)-5-(((2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-2,3,4-triol;(2R,3R,4S,5R,6R)-2-[(2R,3R,4R,5R,6S)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
isoglobotrihexose化学式
CAS
80446-87-3
化学式
C18H32O16
mdl
——
分子量
504.442
InChiKey
FYGDTMLNYKFZSV-JMEHBOGVSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    865.2±65.0 °C(Predicted)
  • 密度:
    1.80±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -6.9
  • 重原子数:
    34
  • 可旋转键数:
    7
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    269
  • 氢给体数:
    11
  • 氢受体数:
    16

SDS

SDS:c231770512382a11c7ff0d2b846c2294
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    isoglobotrihexose乙酸酐4-二甲氨基吡啶 作用下, 以 吡啶 为溶剂, 反应 48.0h, 以98%的产率得到acetyl O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl-(1->4)-2,3,6-tri-O-acetyl-β-D-glucopyranosyl)(1->4)-2,3,6-tri-O-acetyl-β-D-glucopyranoside
    参考文献:
    名称:
    在 TBAI/AW 300 分子筛的促进下,锡基神经酰胺与糖基碘反应有效合成 β-糖鞘脂
    摘要:
    TBAI 和酸洗的分子筛有效地促进了甲磺酸基神经酰胺与糖基碘的糖基化。这种直接糖基化反应减少了合成步骤的总数,并以良好的收率和完全的化学和立体选择性快速获得了 β- 鞘糖脂,例如 GalCer、β-乳糖苷神经酰胺和 iGB3。(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)。
    DOI:
    10.1002/ejoc.200900424
  • 作为产物:
    描述:
    4-O-(4-O-alpha-吡喃半乳糖基-beta-吡喃半乳糖基)吡喃葡萄糖sodium methylate 作用下, 以 甲醇 为溶剂, 反应 0.5h, 以99%的产率得到isoglobotrihexose
    参考文献:
    名称:
    Integrating ReSET with Glycosyl Iodide Glycosylation in Step-Economy Syntheses of Tumor-Associated Carbohydrate Antigens and Immunogenic Glycolipids
    摘要:
    Carbohydrates mediate a wide range of biological processes, and understanding these events and how they might be influenced is a complex undertaking that requires access to pure glycoconjugates. The isolation of sufficient quantities of carbohydrates and glycolipids from biological samples remains a significant challenge that has redirected efforts toward chemical synthesis. However, progress toward complex glycoconjugate total synthesis has been slowed by the need for multiple protection and deprotection steps owing to the large number of similarly reactive hydroxyls in carbohydrates. Two methodologies, regioselective silyl exchange technology (ReSET) and glycosyl iodide glycosylation have now been integrated to streamline the synthesis of the globo series trisaccharides (globotriaose and isoglobotriaose) and alpha-lactosylceramide (alpha-LacCer). These glycoconjugates include tumor-associated carbohydrate antigens (TACAs) and immunostimulatory glycolipids that hold promise as immunotherapeutics. Beyond the utility of the step-economy syntheses afforded by this synthetic platform, the studies also reveal a unique electronic interplay between acetate and silyl ether protecting groups. Incorporation of acetates proximal to silyl ethers attenuates their reactivity while reducing undesirable side reactions. This phenomenon can be used to fine-tune the reactivity of silylated/acetylated sugar building blocks.
    DOI:
    10.1021/jo402736g
点击查看最新优质反应信息

文献信息

  • Efficient Synthesis of β-Glycosphingolipids by Reaction of Stannylceramides with Glycosyl Iodides Promoted by TBAI/AW 300 Molecular Sieves
    作者:José Antonio Morales-Serna、Yolanda Díaz、M. Isabel Matheu、Sergio Castillón
    DOI:10.1002/ejoc.200900424
    日期:2009.8
    TBAI and acid-washed molecular sieves efficiently promoted the glycosylation of stannylceramides with glycosyl iodides. This direct glycosylation reaction reduces the overall number of synthetic steps and provides rapid access to β-glycosphingolipids such as GalCer, β-lactosylceramide, and iGB3 in good yield and with complete chemo- and stereoselectivity. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451
    TBAI 和酸洗的分子筛有效地促进了甲磺酸基神经酰胺与糖基碘的糖基化。这种直接糖基化反应减少了合成步骤的总数,并以良好的收率和完全的化学和立体选择性快速获得了 β- 鞘糖脂,例如 GalCer、β-乳糖苷神经酰胺和 iGB3。(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)。
  • Integrating ReSET with Glycosyl Iodide Glycosylation in Step-Economy Syntheses of Tumor-Associated Carbohydrate Antigens and Immunogenic Glycolipids
    作者:Hsiao-Wu Hsieh、Matthew W. Schombs、Jacquelyn Gervay-Hague
    DOI:10.1021/jo402736g
    日期:2014.2.21
    Carbohydrates mediate a wide range of biological processes, and understanding these events and how they might be influenced is a complex undertaking that requires access to pure glycoconjugates. The isolation of sufficient quantities of carbohydrates and glycolipids from biological samples remains a significant challenge that has redirected efforts toward chemical synthesis. However, progress toward complex glycoconjugate total synthesis has been slowed by the need for multiple protection and deprotection steps owing to the large number of similarly reactive hydroxyls in carbohydrates. Two methodologies, regioselective silyl exchange technology (ReSET) and glycosyl iodide glycosylation have now been integrated to streamline the synthesis of the globo series trisaccharides (globotriaose and isoglobotriaose) and alpha-lactosylceramide (alpha-LacCer). These glycoconjugates include tumor-associated carbohydrate antigens (TACAs) and immunostimulatory glycolipids that hold promise as immunotherapeutics. Beyond the utility of the step-economy syntheses afforded by this synthetic platform, the studies also reveal a unique electronic interplay between acetate and silyl ether protecting groups. Incorporation of acetates proximal to silyl ethers attenuates their reactivity while reducing undesirable side reactions. This phenomenon can be used to fine-tune the reactivity of silylated/acetylated sugar building blocks.
查看更多