A series of dithienophenazines with different lengths of the oligomeric thiophene units (quaterthiophenes and sexithiophenes) was synthesized. The thiophene and phenazine units act as electron donors and acceptors, respectively, resulting in characteristic absorption spectra. The optical spectra were calculated using time-dependent density functional theory at the B3LYP/TZVP level and verify the experimental data. Adsorption of the dithienophenazines on highly ordered pyrolytic graphite (HOPG) was investigated by scanning tunneling microscopy, showing that one of the compounds forms highly organized self-assembled monolayers.
一系列具有不同寡聚噻吩单元长度(四噻吩和六噻吩)的二噻吩并联化合物被合成。噻吩和苝嗪单元分别作为电子给体和受体,导致特征吸收光谱。利用B3LYP/TZVP水平的时变密度泛函理论计算了光谱,并验证了实验数据。利用扫描隧道显微镜研究了二噻吩并联化合物在高度有序的热解石墨(HOPG)上的吸附,结果显示其中一种化合物形成高度有序的自组装单分子层。