摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[2,2':5',2''-三联噻吩]-5,5''-二基双[三甲基硅烷] | 178931-63-0

中文名称
[2,2':5',2''-三联噻吩]-5,5''-二基双[三甲基硅烷]
中文别名
5,5''-双(三甲基锡烷基)-2,2':5',2''-三联噻吩
英文名称
5,5''-bis(trimethylstannyl)-2,2':5',2''-terthiophene
英文别名
5,5''-Bis(trimethylstannyl)-2,2':5',2''-terthiophene;trimethyl-[5-[5-(5-trimethylstannylthiophen-2-yl)thiophen-2-yl]thiophen-2-yl]stannane
[2,2':5',2''-三联噻吩]-5,5''-二基双[三甲基硅烷]化学式
CAS
178931-63-0
化学式
C18H24S3Sn2
mdl
——
分子量
574.007
InChiKey
FIKQPMKITUNTEK-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    120.0 to 124.0 °C
  • 沸点:
    499.8±55.0 °C(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    6.3
  • 重原子数:
    23
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    84.7
  • 氢给体数:
    0
  • 氢受体数:
    3

安全信息

  • 危险等级:
    6.1
  • 危险品运输编号:
    UN 3146
  • 包装等级:
    I
  • 危险类别:
    6.1
  • 危险性防范说明:
    P501,P273,P260,P270,P262,P271,P264,P280,P284,P391,P361+P364,P301+P310+P330,P302+P352+P310,P304+P340+P310,P403+P233,P405
  • 危险性描述:
    H300+H310+H330,H410
  • 储存条件:
    存储温度:0-10°C;需存放在惰性气体中;避免与空气接触和加热。

SDS

SDS:45a09e226208857d4145cb045fd31463
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    [2,2':5',2''-三联噻吩]-5,5''-二基双[三甲基硅烷]1-溴-7-(N-丁氧基)苝酰亚胺四(三苯基膦)钯 作用下, 以 甲苯 为溶剂, 反应 48.0h, 以59%的产率得到
    参考文献:
    名称:
    Oligothiophene-bridged perylene diimide dimers for fullerene-free polymer solar cells: effect of bridge length
    摘要:
    一系列以寡聚噻吩为桥梁的PDI二聚体被设计、理论计算、合成并作为聚合物太阳能电池的电子受体进行开发。研究了寡聚噻吩桥梁长度的影响。
    DOI:
    10.1039/c5ta02589c
  • 作为产物:
    参考文献:
    名称:
    溶液可加工的基于四嗪和低聚噻吩的线性A–D–A小分子:合成,分级结构和光伏性质
    摘要:
    一系列具有受体-供体-受体(A–D–A)结构的高共面替代线性小分子,其中包含电子接受四嗪(Tz)部分和电子提供寡聚噻吩(OTs)部分,烷基化噻吩连接在电子的两侧设计并合成了Tz部分。低聚噻吩长度的变化对(6,6)-苯基-C 61-丁酸甲酯(PC 61)共混膜中小分子的光学和电化学性质,结晶,自组装形态的影响BM)和光伏性能作为有机太阳能电池(OSC)中的施主材料进行了研究。小分子的光学和电化学性质表明,HOMO和LUMO的能级分别由可替代的小分子中OTs的数目和Tz的电子接受能力决定。同时,当与PC 61 BM混合时,不同的OT部分会显着影响分层结构。差示扫描量热法(DSC)和X射线衍射实验表明,具有中等共轭摩尔长度的分子在晶体状态下显示出最高的有序性,与PC 61 BM或(6,6)-苯基-C 71-丁酸甲酯(PC 71 BM)作为光伏器件中的活性层。结果表明,通过调节小分子的共轭键长度控
    DOI:
    10.1016/j.orgel.2013.02.038
点击查看最新优质反应信息

文献信息

  • Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors
    作者:Xin Zhang、Jiannian Yao、Chuanlang Zhan
    DOI:10.1007/s11426-015-5485-8
    日期:2016.2
    Non-fullerene organic acceptors have attracted increasing attention in recent years. One of the challenges in the synthesis of non-fullerene organic acceptors is to tune the absorption spectrum and molecular frontier orbitals, affording low bandgap molecules with improved absorption of the near-infrared solar photons. In this paper, we present the synthesis, optoelectronic and photovoltaic properties of a series of dimeric perylene diimide (PDI) based non-fullerene acceptors. These PDI dimers are bridged by oligothiophene (T) from 1T to 6T. With the increase of the oligothienyl size, the highest occupied molecular orbital (HOMO) energy is raised from −5.65 to −5.10 eV, while that of the lowest unoccupied molecular orbit (LUMO) is kept constant at −3.84 eV, affording narrow bandgap from 1.81 to 1.26 eV. The absorption from the oligothiophene occurs between 350 and 500 nm, which is complementary to that from its bridged PDI units, leading to a wide spectral coverage from 350 to 850 nm. The optimal dihedral angle between the bridged two perylene planes is dependent on the oligothienyl size, varying from 5° to 30°. The solubility of the dimers depends on the oligothienyl size and can be tuned by the alkyl chains on the bridged thienyl units. The possible applications as the solution-processable non-fullerene organic acceptor is primarily studied using commercial P3HT as the blend donor. The photovoltaic results indicate that 1T, 4T and 6T all yield a higher efficiency of ∼1.2%, whereas 2T, 3T and 5T all give a lower efficiency of <0.5%. The difference in the cell performance is related with the tradeoff between the differences of absorption, HOMO level and film-morphology between these dimers.
    近年来,非富勒烯有机受体越来越受到关注。合成非富勒烯有机受体的挑战之一是如何调整吸收光谱和分子前沿轨道,从而获得对近红外太阳光子有更好吸收的低带隙分子。在本文中,我们介绍了一系列基于二聚过二亚胺(PDI)的非富勒烯受体的合成、光电和光伏特性。这些 PDI 二聚体由 1T 到 6T 的低聚噻吩(T)桥接。随着低聚噻吩尺寸的增加,最高占位分子轨道(HOMO)的能量从 -5.65 eV 上升到 -5.10 eV,而最低未占位分子轨道(LUMO)的能量则保持在 -3.84 eV 不变,从而产生了从 1.81 到 1.26 eV 的窄带隙。低聚噻吩的吸收发生在 350 纳米到 500 纳米之间,与桥接 PDI 单元的吸收互补,从而产生了 350 纳米到 850 纳米的宽光谱覆盖范围。桥接的两个苝平面之间的最佳二面角取决于低聚噻吩的大小,从 5°到 30°不等。二聚体的溶解度取决于低聚噻吩基的大小,并可通过桥接噻吩基单元上的烷基链进行调整。我们主要以商用 P3HT 作为混合供体,研究了其作为可溶液加工的非富勒烯有机受体的应用可能性。光伏研究结果表明,1T、4T 和 6T 的效率均高于 1.2%,而 2T、3T 和 5T 的效率则低于 0.5%。电池性能的差异与这些二聚体之间的吸收、HOMO 水平和薄膜形态差异之间的权衡有关。
  • Chiral Amphiphilic Self-Assembled α,α‘-Linked Quinque-, Sexi-, and Septithiophenes:  Synthesis, Stability and Odd−Even Effects
    作者:Oliver Henze、W. James Feast、Fabrice Gardebien、Pascal Jonkheijm、Roberto Lazzaroni、Philippe Leclère、E. W. Meijer、Albertus P. H. J. Schenning
    DOI:10.1021/ja0607234
    日期:2006.5.1
    as the chiral substituent is moved away from the thiophene segment. The stability of the assemblies increases with the length of the oligothiophene and as the substituent chiral unit is moved away from the aromatic core, being greatest for the unsubstituted case. The sign of the Cotton effect alternates in an "odd/even" manner as the position of the chiral substituent is moved along the oligo(ethylene
    在丁醇中合成、表征和自组装一系列明确定义的 α、α'-连接的 quinqui-、sexi- 和 septithiophenes,通过其末端的酯键,被带有手性低聚(环氧乙烷)链取代分别报告了α、β、δ 和ε 甲基。使用紫外/可见光吸收、发光和圆二色光谱对这些分子的自组装进行的研究表明,对于六噻吩的情况,随着手性取代基移离,聚集体中观察到的棉花效应的强度逐渐减弱。噻吩段。组装体的稳定性随着低聚噻吩的长度和取代基手性单元远离芳香核而增加,对于未取代的情况最大。随着手性取代基的位置沿着低聚(环氧乙烷)链移动并从五喹噻吩到具有相同侧链的七噻吩,棉花效应的符号以“奇数/偶数”方式交替。对从溶液沉积在铝或玻璃表面上的材料进行原子力显微镜检查和光学测量表明,胶囊是由低聚噻吩形成的,芳香链段是 H 型堆积。
  • Facile Approach to Perylenemonoimide with Short Side Chains for Nonfullerene Solar Cells
    作者:Yu Hu、Shixiao Chen、Lifu Zhang、Youdi Zhang、Zhongyi Yuan、Xiaohong Zhao、Yiwang Chen
    DOI:10.1021/acs.joc.7b00272
    日期:2017.6.2
    Electron acceptors based on perylene monoimide (PMI) are rare due to the synthetic challenge. Herein, starting from commercially available perylene dianhydride, brominated perylene monoimide (PMI-Br) with short side chains and good solubility was efficiently synthesized in a high overall yield of 71%. With PMI-Br as the intermediate, acceptor donor acceptor type electron acceptors with low-lying LUMO energy levels and strong visible absorption were successfully obtained. The nonfullerene bulk heterojunction solar cells based on these acceptors were fabricated with the highest PCE of 1.3%.
  • Effect of Oligothiophene π-Bridge Length on the Photovoltaic Properties of D–A Copolymers Based on Carbazole and Quinoxalinoporphyrin
    作者:Shaowei Shi、Pei Jiang、Song Chen、Yeping Sun、Xiaochen Wang、Kai Wang、Suling Shen、Xiaoyu Li、Yongfang Li、Haiqiao Wang
    DOI:10.1021/ma3014367
    日期:2012.10.9
    A series of low-bandgap donor-acceptor (D-A) copolymers, P(C-T-QP), P(C-BT-QP), P(C-TT-QP), and P(C-TT-QP-Zn), using 2,7-carbazole (C) as an electron-rich unit and quinoxalino[2,3-b']porphyrins (QP) or quinoxalino[2,3-b']-porphyrinatozinc(QP-Zn) as an electron-deficient unit with different length of oligothiophene pi-bridges, were designed and synthesized via a Pd-catalyzed Stille-coupling method. The pi-bridge between the C donor unit and the QP acceptor unit is thiophene (T) in P(C-T-QP), bithiophene (BT) in P(C-BT-QP), and terthiophene (TT) in P(C-TT-QP) or P(C-TT-QP-Zn). These copolymers possess good solubility, high thermal stability, broad absorption, and low bandgap ranging from 1.66 to 1.73 eV. The influence of the pi-bridge and the central Zn ion on the electronic and photovoltaic properties was investigated and discussed in detail. It was found that the pi-bridge played an important role in tuning the effective conjugation length and therefore significantly affected the molecular architecture and optoelectronic properties of the copolymers. With the pi-bridge varying from thiophene to bithiophene, then to terthiophene, the hole mobility of the copolymers increased gradually, and the absorption was broadened in turn. Zn ion in the porphyrin ring also had a significant influence on the physicochemical and photovoltaic properties. Bulk heterojunction solar cells with the polymers as donor and PC71BM as acceptor demonstrated PCEs of 0.97% for P(C-T-QP), 1.97% for P(C-BT-QP), 2.53% for P(C-TT-QP), and 1.45% for P(C-TT-QP-Zn). All of them are among the highest PCE values of PSCs based on porphyrin polymers. Among the four polymers, although the P(C-TT-QP-Zn) shows the highest hole mobility and the widest absorption, the corresponding PSC demonstrated the lowest PCE because the morphology of P(C-TT-QP-Zn)/PC71BM blend film is not beneficial to the exciton dissociation and charge carriers transport. This study provides a new insight toward the design and future development of quinoxalinoporphyrin-based conjugated polymers.
  • Solution-processable tetrazine and oligothiophene based linear A–D–A small molecules: Synthesis, hierarchical structure and photovoltaic properties
    作者:Yujin Chen、Chao Li、Pan Zhang、Yaowen Li、Xiaoming Yang、Liwei Chen、Yingfeng Tu
    DOI:10.1016/j.orgel.2013.02.038
    日期:2013.5
    blended together with PC61BM or (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as active layer in photovoltaic devices. The results indicate that hierarchical structures controlled by adjusting the conjugate moity length of small molecules is an effective way to improve the performance of OSCs. The photovoltaic device based on TT(HTTzHT)2:PC71BM with 1% DIO additives showed the best performance,
    一系列具有受体-供体-受体(A–D–A)结构的高共面替代线性小分子,其中包含电子接受四嗪(Tz)部分和电子提供寡聚噻吩(OTs)部分,烷基化噻吩连接在电子的两侧设计并合成了Tz部分。低聚噻吩长度的变化对(6,6)-苯基-C 61-丁酸甲酯(PC 61)共混膜中小分子的光学和电化学性质,结晶,自组装形态的影响BM)和光伏性能作为有机太阳能电池(OSC)中的施主材料进行了研究。小分子的光学和电化学性质表明,HOMO和LUMO的能级分别由可替代的小分子中OTs的数目和Tz的电子接受能力决定。同时,当与PC 61 BM混合时,不同的OT部分会显着影响分层结构。差示扫描量热法(DSC)和X射线衍射实验表明,具有中等共轭摩尔长度的分子在晶体状态下显示出最高的有序性,与PC 61 BM或(6,6)-苯基-C 71-丁酸甲酯(PC 71 BM)作为光伏器件中的活性层。结果表明,通过调节小分子的共轭键长度控
查看更多

同类化合物

试剂2,2'-Thieno[3,2-b]thiophene-2,5-diylbis-3-thiophenecarboxylicacid 苯并[b]噻吩,3-(2-噻嗯基)- 甲基[2,3'-联噻吩]-5-羧酸甲酯 牛蒡子醇 B 十四氟-Alpha-六噻吩 三丁基(5''-己基-[2,2':5',2''-三联噻吩]-5-基)锡 α-四联噻吩 α-六噻吩 α-五联噻吩 α-七噻吩 α,ω-二己基四噻吩 5,5′-双(3-己基-2-噻吩基)-2,2′-联噻吩 α,ω-二己基六联噻吩 Α-八噻吩 alpha-三联噻吩甲醇 alpha-三联噻吩 [3,3-Bi噻吩]-2,2-二羧醛 [2,2’]-双噻吩-5,5‘-二甲醛 [2,2':5',2''-三联噻吩]-5,5''-二基双[三甲基硅烷] [2,2'-联噻吩]-5-甲醇,5'-(1-丙炔-1-基)- [2,2'-联噻吩]-5-甲酸甲酯 [2,2'-联噻吩]-5-乙酸,a-羟基-5'-(1-炔丙基)-(9CI) C-[2,2-二硫代苯-5-基甲基]胺 5’-己基-2,2’-联噻吩-5-硼酸频哪醇酯 5-辛基-1,3-二(噻吩-2-基)-4H-噻吩并[3,4-c]吡咯-4,6(5H)-二酮 5-苯基-2,2'-联噻吩 5-溴5'-辛基-2,2'-联噻吩 5-溴-5′-己基-2,2′-联噻吩 5-溴-5'-甲酰基-2,2':5'2'-三噻吩 5-溴-3,3'-二己基-2,2'-联噻吩 5-溴-3'-癸基-2,2':5',2''-三联噻吩 5-溴-2,2-双噻吩 5-溴-2,2'-联噻吩-5'-甲醛 5-氯-5'-苯基-2,2'-联噻吩 5-氯-2,2'-联噻吩 5-正辛基-2,2'-并噻吩 5-己基-5'-乙烯基-2,2'-联噻吩 5-己基-2,2-二噻吩 5-全氟己基-5'-溴-2,2'-二噻吩 5-全氟己基-2,2′-联噻吩 5-乙酰基-2,2-噻吩基 5-乙氧基-2,2'-联噻吩 5-丙酰基-2,2-二噻吩 5-{[[2,2'-联噻吩]-5-基}噻吩-2-腈 5-[5-(5-己基噻吩-2-基)噻吩-2-基]噻吩-2-羧酸 5-(羟甲基)-[2,2]-联噻吩 5-(噻吩-2-基)噻吩-2-甲腈 5-(5-甲酰基-3-己基噻吩-2-基)-4-己基噻吩-2-甲醛 5-(5-甲基噻吩-2-基)噻吩-2-甲醛 5-(5-噻吩-2-基噻吩-2-基)噻吩-2-羧酸 5-(5-乙炔基噻吩-2-基)噻吩-2-甲醛