摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-deoxy-D-glucopyranose 6-phosphate(2-)

中文名称
——
中文别名
——
英文名称
2-deoxy-D-glucopyranose 6-phosphate(2-)
英文别名
[(2R,3S,4R)-3,4,6-trihydroxyoxan-2-yl]methyl phosphate
2-deoxy-D-glucopyranose 6-phosphate(2-)化学式
CAS
——
化学式
C6H11O8P-2
mdl
——
分子量
242.12
InChiKey
UQJFZAAGZAYVKZ-CERMHHMHSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -3.4
  • 重原子数:
    15
  • 可旋转键数:
    2
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    142
  • 氢给体数:
    3
  • 氢受体数:
    8

反应信息

  • 作为反应物:
    参考文献:
    名称:
    全基因组分析的大肠杆菌卤代酸脱卤酶样磷酸酶家族的底物特异性。
    摘要:
    类卤酸脱卤酶(HAD)水解酶是一个庞大的超家族,主要由未鉴定的酶组成,少数成员显示具有磷酸酶,β-磷酸葡萄糖变位酶,磷酸酶和脱卤酶活性。我们使用一组代表性的80种磷酸化底物,对大肠杆菌基因组中编码的23种可溶性HAD的底物特异性进行了表征。我们确定了21种HADs中的小分子磷酸酶活性和一种蛋白质中的β-磷酸葡萄糖突变酶活性。大肠杆菌HAD磷酸酶显示出高催化效率和对广泛的磷酸化代谢产物的亲和力,这些代谢产物是各种代谢反应的中间产物。大多数E.coli HAD都没有遵循经典的“一种酶-一种底物”模型,而是显示出非常宽广且重叠的底物光谱。目前,至少有12种由HAD催化的反应未在酶命名法中分配EC号。出乎意料的是,大多数HAD水解了小的磷酸供体(乙酰磷酸酯,氨基甲酰磷酸酯和氨基磷酸酯),它们也用作两组分信号转导系统受体域自磷酸化的底物。对于一种HAD,YniC,在体内证实了磷酸酶活性与优选底物的生
    DOI:
    10.1074/jbc.m605449200
  • 作为产物:
    参考文献:
    名称:
    己糖激酶抑制剂 2-脱氧-D-葡萄糖对小隐孢子虫的作用及市售药物对寄生虫己糖激酶活性的发现
    摘要:
    Cryptosporidium parvum 是导致人类和动物轻度至重度隐孢子虫病的主要物种之一。我们之前已经观察到 2-脱氧-d-葡萄糖 (2DG) 可以抑制 C. parvum 己糖激酶 (CpHK) 的酶活性和体外寄生虫生长。然而,2DG 在 C. parvum 中的作用和命运尚未得到充分研究。在本研究中,我们表明,虽然 2DG 可以被 CpHK 磷酸化形成 2DG-6-磷酸(2DG6P),但 2DG 的抗隐孢子虫活性主要归因于 2DG 对 CpHK 的作用,而不是下游酶葡萄糖-6-磷酸异构酶 (CpGPI) 上的 2DG 或 2DG6P 或 CpHK 上的 2DG6P。这些观察结果进一步支持了CPHK可以作为寄生虫的药物靶点的假设。我们还筛选了 1, 200 种由市售抗 CpHK 药物组成的小分子,其中四种药物被鉴定为 CpHK 抑制剂,在对宿主细胞无毒的浓度下具有微摩尔水平的抗隐
    DOI:
    10.1111/jeu.12690
点击查看最新优质反应信息

文献信息

  • DOGR1 andDOGR2: Two genes fromSaccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed
    作者:Francisca Randez-Gil、Amalia Blasco、Jose Antonio Prieto、Pascual Sanz
    DOI:10.1002/yea.320111303
    日期:1995.10
    Saccharomyces cerevisiae contains two genes (DOGR1 and DOGR2) that are able to confer 2-deoxyglucose resistance when they are overexpressed. These genes are very similar, sharing 92% identity at the protein level. They code for two isoenzymes with 2-deoxyglucose-6 phosphate (2-DOG-6P) phosphatase activity. These enzymes have been purified and characterized. DogR1p shows an optimum pH of 6, an optimum
    酿酒酵母包含两个基因(DOGR1和DOGR2),当它们过表达时,它们能够赋予2-脱氧葡萄糖抗性。这些基因非常相似,在蛋白质平上具有92%的同一性。它们编码具有2-脱氧葡萄糖-6磷酸(2-DOG-6P)磷酸酶活性的两种同工酶。这些酶已经过纯化和鉴定。DogR1p的最佳pH为6,最佳温度为30摄氏度,2-DOG-6P的KM为17 mM。DogR2p显示相似的最佳pH值,但最佳温度为40摄氏度,在2-DOG-6P上显示KM为41 mM。两种酶都需要10 mM-MgCl2才能发挥最大活性,并且都被无机磷酸盐抑制。
  • Sols A.; Crane R.K., J Biol Chem, 1954, 0021-9258, 581-95
    作者:Sols A.、Crane R.K.
    DOI:——
    日期:——
  • The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast
    作者:F. Randez-Gil、J. A. Prieto、P. Sanz
    DOI:10.1007/bf00315774
    日期:1995.7
    2-deoxyglucose (2-DOG), a non-metabolize analogue of glucose, is taken up by yeast using the same transporter(s) as glucose and is phosphorylated by hexokinases producing 2-deoxyglucose-6-P. We found that in DOG(R) yeasts, 2-DOG was not able to trigger glucose repression, even at concentrations of 0.5%. This result suggests that the specific 2-DOG-6P phosphatase, the enzyme responsible for the DOG(R) phenotype, may be involved in inhibiting the process of catabolite repression mediated by 2-DOG.
  • Beutler E.; Morrison M., J Biol Chem, 1967, 0021-9258, 5289-93
    作者:Beutler E.、Morrison M.
    DOI:——
    日期:——
  • Metabolic Fluxes Between [<sup>14</sup>C]2-Deoxy-D-Glucose and [<sup>14</sup>C]2-Deoxy-D-Glucose-6-Phosphate in Brain In Vivo
    作者:Ming-Ta Huang、Richard L. Veech
    DOI:10.1111/j.1471-4159.1985.tb05450.x
    日期:1985.2
    Abstract: The rates of the phosphorylation and dephosphorylation of 2‐deoxyglucose were measured in rat brain in vivo using tracer kinetic techniques. The rate constant for each reaction was estimated from two separate experiments with different protocols for tracer administration. Tracer amounts of [1‐14C]2‐deoxyglucose (1 μCi) were injected through the internal carotid artery (intraarterial experiment), or through the atrium (intravenous experiment). Brains were sampled by freeze‐blowing at various times after the injection. In the intraarterial experiment, the rate constant for the forward reaction from 2‐deoxyglucose to 2‐deoxyglucose phosphate was calculated by dividing the initial rate of 2‐deoxyglucose phosphate production by the 2‐deoxyglucose content in brain. The rate constant for the reverse reaction from 2‐deoxyyglucose phosphate to 2‐deoxyglucose was calculated from the decay constant of 2‐deoxyglucose phosphate. The rate constants estimated were 10.1 ± 1.4%/min (SD) and 3.00 ± 0.01%/min (SD), respectively, for the forward and reverse reactions. In the intravenous experiment, rate constants for both reactions were estimated by compartmental analysis. By fitting data to program SAAM‐27, the rate constants for the forward and reverse reactions were estimated as 11.4 ± 0.4%/min (SD) and 5.1 ± 0.4%/min (SD), respectively. The rate constants determined were compared to those for the reactions between glucose and glucose‐6‐phosphate, estimated previously from labeled glucoses. It is concluded that the rate of glucose utilization measured by the 2‐deoxyglucose method reflects the rate of the hexokinase reaction and not the rate of glucose utilization or brain energy utilization.
查看更多