Doubly carbon-branched pentoses: synthesis of both enantiomers of 2,4-di-C-methyl arabinose and 2-deoxy-2,4-di-C-methyl arabinose using only acetonide protection
作者:K. Victoria Booth、Sarah F. Jenkinson、Daniel Best、Fernando Fernández Nieto、Ramón J. Estévez、Mark R. Wormald、Alexander C. Weymouth-Wilson、George W.J. Fleet
DOI:10.1016/j.tetlet.2009.06.098
日期:2009.9
An acetonide is the only protecting group used in the synthesis of both the enantiomers of 2,4-di-C-methyl arabinose and 2-deoxy-2,4-di-C-methyl arabinose via the enantiomeric 3-C-methyl-L-erythronolactone [from 2-C-methyl-D-ribono-lactone or D-ribose] and 3-C-methyl-D-erythronolactone [from D-tagatose Or L-ribose]. NMR studies on unprotected C-methyl arabinoses show that methyl branching significantly affects the ratios of pyranose and furanose forms present in aqueous Solution. (C) 2009 Elsevier Ltd. All rights reserved.
Synthesis of 2-C-branched derivatives of d-mannose: 2-C-aminomethyl-d-mannose binds to the human C-type lectin DC-SIGN with affinity greater than an order of magnitude compared to that of d-mannose
作者:Daniel A. Mitchell、Nigel A. Jones、Stuart J. Hunter、Joseph M.D. Cook、Sarah F. Jenkinson、Mark R. Wormald、Raymond A. Dwek、George W.J. Fleet
DOI:10.1016/j.tetasy.2007.06.003
日期:2007.7
2-C-Substituted branched D-mannose analogues are novel monosaccharides, readily obtained from a Kiliani-acetonation sequence on D-fructose, followed by subsequent functional group manipulation. 2-C-Azidomethyl-D-mannose and 2-C-aminomethylD-marmose bind to the C-type lectin DC-SIGN (CD209) with significantly greater affinity than mannose. In particular, 2-C-aminomethyl-D-mannose exhibits a comparative 48-fold increase in binding as determined using a surface plasmon resonance-based competition assay. DC-SIGN is an important cell-surface type II transmembrane protein that interacts with blood group antigens, endogenous glycoproteins such as ICAM-3, and also deadly pathogens such as the human immunodeficiency and hepatitis C viruses. The effective use of small compounds to block target binding by mannose-selective C-type lectins at sub-millimolar concentrations has not been shown previously; thus, these data represent a very attractive thoroughfare to novel antiviral and immunomodulatory drug development. @ 2007 Elsevier Ltd. All rights reserved.
US20140274930A1
申请人:——
公开号:——
公开(公告)日:——
MANNOSE DERIVATIVES FOR TREATING BACTERIAL INFECTIONS