Toward High Performance n-Type Thermoelectric Materials by Rational Modification of BDPPV Backbones
摘要:
Three n-type polymers BDPPV, ClBDPPV, and FBDPPV which exhibit Outstanding electrical conductivities when mixed with an n-type dopant, N-DMBI ((4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine), in solution. High electron mobility and an efficient doping process endow FBDPPV with the highest electrical conductivities of 14 S cm(-1) and power factors up to 28 mu W m(-1) K-2, which is the highest thermoelectric (TE) power factor that has been reported for solution processable n-type conjugated polymers. Our investigations reveal that introduction of halogen atoms to the polymer backbones has a dramatic influence on not only the electron mobilities but also the doping levels, both of which are critical to the electrical conductivities. This work suggests the significance of rational modification of polymer structures and opens the gate for applying the rapidly developed organic semiconductors with high carrier mobilities to thermoelectric field.
A thermoelectric composite comprises at least one organic matrix material that may be electrically reduced or oxidized; and at least one particle inclusion comprising an insulating material in which a strong oxidizing dopant or strong reducing dopant is encapsulated.
Design of thymidylate synthase inhibitors using protein crystal structures: the synthesis and biological evaluation of a novel class of 5-substituted quinazolinones
作者:Stephen E. Webber、Ted M. Bleckman、John Attard、Judith G. Deal、Vinit Kathardekar、Katherine M. Welsh、Stephanie Webber、Cheryl A. Janson、David A. Matthews
DOI:10.1021/jm00058a010
日期:1993.3
The design, synthesis, and biological evaluation of a new class of inhibitors of thymidylate synthase (TS) is described. The molecular design was carried out by a repetitive crystallographic analysis of protein-ligand structures. At the onset of this project, we focused on the folate cofactor binding site of a high-resolution ternary crystal complex of Escherichia coli TS, 5'-fluorodeoxyuridylate (5-FdUMP)
Three n-type polymers BDPPV, ClBDPPV, and FBDPPV which exhibit Outstanding electrical conductivities when mixed with an n-type dopant, N-DMBI ((4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine), in solution. High electron mobility and an efficient doping process endow FBDPPV with the highest electrical conductivities of 14 S cm(-1) and power factors up to 28 mu W m(-1) K-2, which is the highest thermoelectric (TE) power factor that has been reported for solution processable n-type conjugated polymers. Our investigations reveal that introduction of halogen atoms to the polymer backbones has a dramatic influence on not only the electron mobilities but also the doping levels, both of which are critical to the electrical conductivities. This work suggests the significance of rational modification of polymer structures and opens the gate for applying the rapidly developed organic semiconductors with high carrier mobilities to thermoelectric field.