摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(2-methylpyrazolo[1,5-a]pyridin-3-yl)ethan-1-amine | 1312891-66-9

中文名称
——
中文别名
——
英文名称
2-(2-methylpyrazolo[1,5-a]pyridin-3-yl)ethan-1-amine
英文别名
2-(2-methyl-pyrazolo[1,5-a]pyridin-3-yl)ethylamine;2-(2-Methylpyrazolo[1,5-a]pyridin-3-yl)ethanamine
2-(2-methylpyrazolo[1,5-a]pyridin-3-yl)ethan-1-amine化学式
CAS
1312891-66-9
化学式
C10H13N3
mdl
——
分子量
175.233
InChiKey
JRXPWSKLBKHRHT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.8
  • 重原子数:
    13
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.3
  • 拓扑面积:
    43.3
  • 氢给体数:
    1
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors
    摘要:
    Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent. HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree, of pharmacophore homology between these two targets was discovered. This, similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.
    DOI:
    10.1021/jm200388e
  • 作为产物:
    描述:
    2-甲基-吡唑并[1,5-a]吡啶-3-羧酸乙酯manganese(IV) oxide 、 lithium aluminium tetrahydride 、 三氟化硼 、 ammonium acetate 、 diborane(6) 作用下, 以 四氢呋喃 为溶剂, 反应 2.5h, 生成 2-(2-methylpyrazolo[1,5-a]pyridin-3-yl)ethan-1-amine
    参考文献:
    名称:
    Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors
    摘要:
    Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent. HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree, of pharmacophore homology between these two targets was discovered. This, similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.
    DOI:
    10.1021/jm200388e
点击查看最新优质反应信息

文献信息

  • Potent, Selective, Water Soluble, Brain-Permeable EP2 Receptor Antagonist for Use in Central Nervous System Disease Models
    作者:Radhika Amaradhi、Avijit Banik、Shabber Mohammed、Vidyavathi Patro、Asheebo Rojas、Wenyi Wang、Damoder Reddy Motati、Ray Dingledine、Thota Ganesh
    DOI:10.1021/acs.jmedchem.9b01218
    日期:2020.2.13
    brain-permeable EP2 antagonist 1 (TG6-10-1), which displayed anti-inflammatory and neuroprotective actions in rodent models of status epilepticus. However, this compound exhibited moderate selectivity to EP2, a short plasma half-life in rodents (1.7 h) and low aqueous solubility (27 μM), limiting its use in animal models of chronic disease. With lead-optimization studies, we have developed several novel EP2 antagonists
    前列腺素 EP2 受体的激活会加剧中枢神经系统疾病(如癫痫、阿尔茨海默病和脑动脉瘤)中的神经炎症和神经退行性病理。选择性和脑渗透性 EP2 拮抗剂将有助于减轻 EP2 激活的炎症后果并减轻这些慢性疾病的严重程度。我们最近开发了一种脑渗透性 EP2 拮抗剂 1 (TG6-10-1),它在癫痫持续状态啮齿动物模型中显示出抗炎和神经保护作用。然而,该化合物对 EP2 表现出中等选择性,在啮齿动物中的血浆半衰期较短(1.7 小时)且水溶性较低(27 μM),限制了其在慢性疾病动物模型中的使用。通过先导化合物优化研究,我们开发了几种新型 EP2 拮抗剂,这些拮抗剂具有改善的水溶性、脑渗透性、高 EP2 效力和选择性。这些新型抑制剂抑制小胶质细胞系中 EP2 受体激活诱导的炎症基因表达,增强了 EP2 拮抗剂作为抗炎剂的用途。
  • [EN] PROSTAGLANDIN RECEPTOR EP2 ANTAGONISTS, DERIVATIVES, AND USES RELATED THERETO<br/>[FR] ANTAGONISTES DU RÉCEPTEUR EP2 DE LA PROSTAGLANDINE, DÉRIVÉS, ET UTILISATIONS ASSOCIÉS
    申请人:UNIV EMORY
    公开号:WO2020191208A1
    公开(公告)日:2020-09-24
    The disclosure relates to Prostaglandin receptor EP2 antagonists, derivatives, compositions, and methods related thereto. In certain embodiments, the disclosure relates to methods of treating or preventing conditions and diseases in which EP2 receptor activation has a physiological role, such as but not limited to, brain injury, inflammatory diseases, epilepsy, neuroinflamation after a seizure, pain, endometriosis, cancer, rheumatoid arthritis, skin inflammation, vascular inflammation, colitis, and neurological disorders by administering a pharmaceutical composition comprising a compound disclosed herein to a subject in need thereof.
    该公开涉及前列腺素受体EP2拮抗剂、衍生物、组合物以及相关方法。在某些实施方式中,该公开涉及治疗或预防EP2受体激活在生理角色中发挥作用的疾病和情况的方法,例如但不限于脑损伤、炎症性疾病、癫痫、癫痫后的神经炎症、疼痛、子宫内膜异位症、癌症、类风湿性关节炎、皮肤炎症、血管炎症、结肠炎和神经系统疾病,通过向需要的受试者施用含有本文所披露的化合物的药物组合物。
  • PROSTAGLANDIN RECEPTOR EP2 ANTAGONISTS, DERIVATIVES, AND USES RELATED THERETO
    申请人:Emory University
    公开号:EP3941916A1
    公开(公告)日:2022-01-26
  • Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors
    作者:Michael D. Shultz、Xueying Cao、Christine H. Chen、Young Shin Cho、Nicole R. Davis、Joe Eckman、Jianmei Fan、Alex Fekete、Brant Firestone、Julie Flynn、Jack Green、Joseph D. Growney、Mats Holmqvist、Meier Hsu、Daniel Jansson、Lei Jiang、Paul Kwon、Gang Liu、Franco Lombardo、Qiang Lu、Dyuti Majumdar、Christopher Meta、Lawrence Perez、Minying Pu、Tim Ramsey、Stacy Remiszewski、Suzanne Skolnik、Martin Traebert、Laszlo Urban、Vinita Uttamsingh、Ping Wang、Steven Whitebread、Lewis Whitehead、Yan Yan-Neale、Yung-Mae Yao、Liping Zhou、Peter Atadja
    DOI:10.1021/jm200388e
    日期:2011.7.14
    Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent. HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree, of pharmacophore homology between these two targets was discovered. This, similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.
查看更多

同类化合物

西卡唑酯 维利西呱 盐酸依他唑酯 月桂41-2272 月桂-41-8543 异丁司特 吡唑并[5,1-f]吡啶-6-甲醛 吡唑并[1,5-a]吡啶-7-羧酸 吡唑并[1,5-a]吡啶-7-甲醇 吡唑并[1,5-a]吡啶-7-甲胺 吡唑并[1,5-a]吡啶-5-醇 吡唑并[1,5-a]吡啶-5-胺 吡唑并[1,5-a]吡啶-5-羧醛 吡唑并[1,5-a]吡啶-5-羧酸 吡唑并[1,5-a]吡啶-5-基甲醇 吡唑并[1,5-a]吡啶-4-醇 吡唑并[1,5-a]吡啶-4-羧酸乙酯 吡唑并[1,5-a]吡啶-4-羧酸 吡唑并[1,5-a]吡啶-4-甲醛 吡唑并[1,5-a]吡啶-3-胺盐酸盐 吡唑并[1,5-a]吡啶-3-胺 吡唑并[1,5-a]吡啶-3-羧酸甲酯 吡唑并[1,5-a]吡啶-3-羧酸 吡唑并[1,5-a]吡啶-3-甲醛 吡唑并[1,5-a]吡啶-3-甲酰胺 吡唑并[1,5-a]吡啶-3-甲胺 吡唑并[1,5-a]吡啶-3-基甲醇 吡唑并[1,5-a]吡啶-3-基乙腈 吡唑并[1,5-a]吡啶-3,7-二醇 吡唑并[1,5-a]吡啶-3,7-二胺 吡唑并[1,5-a]吡啶-3,6-二胺 吡唑并[1,5-a]吡啶-3,5-二胺 吡唑并[1,5-a]吡啶-3,4-二胺 吡唑并[1,5-a]吡啶-2-羧醛 吡唑并[1,5-a]吡啶-2-碳酰肼 吡唑并[1,5-a]吡啶-2-甲醇 吡唑并[1,5-a]吡啶-2-甲酸甲酯 吡唑并[1,5-a]吡啶-2-甲酸 吡唑并[1,5-a]吡啶-2-甲胺 吡唑并[1,5-a]吡啶-2,3-二胺 吡唑并[1,5-a]吡啶-2,3-二甲酸二甲酯 吡唑并[1,5-a]吡啶-2,3-二甲酸二乙酯 吡唑并[1,5-a]吡啶-2(1H)-酮 吡唑并[1,5-a]吡啶 吡唑并[1,5-A〕吡啶-3,5-二羧酸-3-乙基 吡唑并[1,5-A]吡啶-7-甲酰胺 吡唑并[1,5-A]吡啶-7-甲腈 吡唑并[1,5-A]吡啶-5-甲腈 吡唑并[1,5-A]吡啶-3-硼酸 吡唑并[1,5-A]吡啶-3-硫代甲酰胺