4-Hydroxy-5,6-dihydropyrones as Inhibitors of HIV Protease: The Effect of Heterocyclic Substituents at C-6 on Antiviral Potency and Pharmacokinetic Parameters
作者:Susan E. Hagen、John Domagala、Christopher Gajda、Michael Lovdahl、Bradley D. Tait、Eric Wise、Tod Holler、Donald Hupe、Carolyn Nouhan、Andrej Urumov、Greg Zeikus、Eric Zeikus、Elizabeth A. Lunney、Alexander Pavlovsky、Stephen J. Gracheck、James Saunders、Steve VanderRoest、Joanne Brodfuehrer
DOI:10.1021/jm0003844
日期:2001.7.1
Due largely to the emergence of multi-drug-resistant HIV strains, the development of new HIV protease inhibitors remains a high priority for the pharmaceutical industry. Toward this end, we previously identified a 4-hydroxy-5,6-dihydropyrone lead compound (CI-1029, 1) which possesses excellent activity against the protease enzyme, good antiviral efficacy in cellular assays, and promising bioavailability in several animal species. The search for a suitable backup candidate centered on the replacement of the aniline moiety at C-6 with an appropriately substituted heterocyle. In general, this series of heterocyclic inhibitors displayed good activity (in both enzymatic and cellular tests) and-low cellular toxicity; furthermore, several analogues exhibited improved pharmacokinetic parameters in animal models. The compound with the best combination of high potency, low toxicity, and favorable bioavailabilty was (S)-3-(2-tertbutyl-4-hydroxymethy1- 5-methyl-phenylsulfanyl)-4-hydroxy-6-isopropyl-6-(2-thiophen-3-yl-ethyl)-5,6-dihydro-pyran-2-one (13-(S)). This thiophene derivative also exhibited excellent antiviral efficacy against mutant HIV protease and resistant HIV strains. For these reasons, compound 13-(S) was chosen for further preclinical evaluation.