摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-[3,5-Bis(trifluoromethyl)phenyl]-2,2,2-trideuterioethanone | 128599-58-6

中文名称
——
中文别名
——
英文名称
1-[3,5-Bis(trifluoromethyl)phenyl]-2,2,2-trideuterioethanone
英文别名
1-[3,5-bis(trifluoromethyl)phenyl]-2,2,2-trideuterioethanone
1-[3,5-Bis(trifluoromethyl)phenyl]-2,2,2-trideuterioethanone化学式
CAS
128599-58-6
化学式
C10H6F6O
mdl
——
分子量
259.124
InChiKey
MCYCSIKSZLARBD-FIBGUPNXSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.9
  • 重原子数:
    17
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.3
  • 拓扑面积:
    17.1
  • 氢给体数:
    0
  • 氢受体数:
    7

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Solvolytic elimination reactions of tertiary .alpha.-CSNMe2-substituted systems
    摘要:
    The tertiary benzylic alpha-CSNMe2-substituted p-nitrobenzoates and trifluoroacetates of general structure Ar(CH3)C(CSNMe2)(OCOR), 7 and 8, solvolyze to give exclusively elimination products H2C = C(CSNMe2)Ar. A Hammett study gave a nonlinear correlation. Variation in rate with solvent ionizing power was small for the unsubstituted trifluoroacetate derivative of 8, and the beta-CD3 isotope effect on rate was negligible. There is, however, a large isotope effect (2.5-2.8) in formation of the elimination product when Ph(CH2D)C(CSNMe2)(OCOCF3) solvolyzes. It is concluded that an intermediate must be involved since the product-determining step and the rate-determining step have differing isotope effects. The likely intermediate is an alpha-CSNMe2-substituted cation (as an ion pair), despite the fact that the reaction has few characteristics of a typical E1 reaction. Tertiary norbornyl, cyclohexyl, and 2-propyl alpha-CSNMe2-substituted systems also react to give exclusively elimination products at rates far in excess of alpha-CONMe2 analogues. It is suggested that alpha-CSNMe2 cations are also intermediates and that these cations undergo proton loss at an early ion pair stage. These cations are proposed to derive substantial stabilization by charge delocalization onto sulfur of the thiocarbonyl group. By way of contrast, the secondary system CH3CH(CSNMe2)(OCOCF3), 25, solvolyzes to give mainly a rearranged product CH3CH(CONMe2)(SCOCH3) via a k(DELTA) mechanism involving neighboring thiocarbonyl participation leading to a cyclized ion.
    DOI:
    10.1021/jo00032a051
  • 作为产物:
    参考文献:
    名称:
    Solvolytic elimination reactions of tertiary .alpha.-CSNMe2-substituted systems
    摘要:
    The tertiary benzylic alpha-CSNMe2-substituted p-nitrobenzoates and trifluoroacetates of general structure Ar(CH3)C(CSNMe2)(OCOR), 7 and 8, solvolyze to give exclusively elimination products H2C = C(CSNMe2)Ar. A Hammett study gave a nonlinear correlation. Variation in rate with solvent ionizing power was small for the unsubstituted trifluoroacetate derivative of 8, and the beta-CD3 isotope effect on rate was negligible. There is, however, a large isotope effect (2.5-2.8) in formation of the elimination product when Ph(CH2D)C(CSNMe2)(OCOCF3) solvolyzes. It is concluded that an intermediate must be involved since the product-determining step and the rate-determining step have differing isotope effects. The likely intermediate is an alpha-CSNMe2-substituted cation (as an ion pair), despite the fact that the reaction has few characteristics of a typical E1 reaction. Tertiary norbornyl, cyclohexyl, and 2-propyl alpha-CSNMe2-substituted systems also react to give exclusively elimination products at rates far in excess of alpha-CONMe2 analogues. It is suggested that alpha-CSNMe2 cations are also intermediates and that these cations undergo proton loss at an early ion pair stage. These cations are proposed to derive substantial stabilization by charge delocalization onto sulfur of the thiocarbonyl group. By way of contrast, the secondary system CH3CH(CSNMe2)(OCOCF3), 25, solvolyzes to give mainly a rearranged product CH3CH(CONMe2)(SCOCH3) via a k(DELTA) mechanism involving neighboring thiocarbonyl participation leading to a cyclized ion.
    DOI:
    10.1021/jo00032a051
点击查看最新优质反应信息

文献信息

  • Solvolytic elimination reactions of tertiary .alpha.-CSNMe2-substituted systems
    作者:Xavier Creary、Holia N. Hatoum、Angela Barton、Timothy E. Aldridge
    DOI:10.1021/jo00032a051
    日期:1992.3
    The tertiary benzylic alpha-CSNMe2-substituted p-nitrobenzoates and trifluoroacetates of general structure Ar(CH3)C(CSNMe2)(OCOR), 7 and 8, solvolyze to give exclusively elimination products H2C = C(CSNMe2)Ar. A Hammett study gave a nonlinear correlation. Variation in rate with solvent ionizing power was small for the unsubstituted trifluoroacetate derivative of 8, and the beta-CD3 isotope effect on rate was negligible. There is, however, a large isotope effect (2.5-2.8) in formation of the elimination product when Ph(CH2D)C(CSNMe2)(OCOCF3) solvolyzes. It is concluded that an intermediate must be involved since the product-determining step and the rate-determining step have differing isotope effects. The likely intermediate is an alpha-CSNMe2-substituted cation (as an ion pair), despite the fact that the reaction has few characteristics of a typical E1 reaction. Tertiary norbornyl, cyclohexyl, and 2-propyl alpha-CSNMe2-substituted systems also react to give exclusively elimination products at rates far in excess of alpha-CONMe2 analogues. It is suggested that alpha-CSNMe2 cations are also intermediates and that these cations undergo proton loss at an early ion pair stage. These cations are proposed to derive substantial stabilization by charge delocalization onto sulfur of the thiocarbonyl group. By way of contrast, the secondary system CH3CH(CSNMe2)(OCOCF3), 25, solvolyzes to give mainly a rearranged product CH3CH(CONMe2)(SCOCH3) via a k(DELTA) mechanism involving neighboring thiocarbonyl participation leading to a cyclized ion.
查看更多