Leishmaniasis, a neglected tropical disease, currently infects approximately 12 million people worldwide with 1 to 2 million new cases each year in predominately underdeveloped countries. The treatment of the disease is severely underdeveloped due to the ability of the Leishmania pathogen to evade and abate immune responses. In an effort to develop anti-leishmaniasis vaccines and adjuvants, novel carbohydrate-based probes were made to study the mechanisms of immune modulation. In this study, a new bioerodible polyanhydride microparticle was designed and conjugated with a glycodendrimer molecular probe. This molecular probe incorporates a pathogen-like multivalent display of α-1,2-trimannose, for which a more efficient synthesis was designed, with a tethered fluorophore. Further attachment of the glycodendrimer to a biocompatible, surface eroding microparticle allows for targeted uptake and internalization of the pathogen-associated oligosaccharide by phagocytic immune cells. The α-1,2-trimannose-linked bioerodible microparticles were found to be safe after administration into the footpad of mice and demonstrated a similar response to α-1,2-trimannose-coated latex beads during L. major footpad infection. Furthermore, the bioerodible microparticles allowed for investigation of the role of pathogen-associated oligosaccharides for recognition by pathogen-recognition receptors during L. major-induced leishmaniasis.
利什曼病是一种被忽视的热带疾病,目前全球大约有1200万人感染,每年有大约100万到200万新病例,主要发生在发展中国家。由于利什曼原虫能够逃避和减弱免疫反应,治疗这种疾病的方法严重不足。为了开发抗利什曼病的疫苗和佐剂,人们制作了基于碳水化合物的新的分子探针来研究免疫调节的机制。在这项研究中,设计了一种新的生物可降解的多酸酐微粒,并将其与一种糖基树状分子探针结合。这个分子探针结合了一种类似病原体的多价α-1,2-三甘露糖展示,为了更有效的合成,它还连接了一个荧光团。将糖基树状分子进一步附着在生物相容性、表面侵蚀的微粒上,允许吞噬免疫细胞针对性地摄取和内化与病原体相关的低聚糖。α-1,2-三甘露糖连接的生物可降解微粒在小鼠脚垫内注射后被认为是安全的,并且在利什曼原虫脚垫感染期间,对α-1,2-三甘露糖包被的乳胶珠的反应相似。此外,生物可降解微粒允许研究病原体相关低聚糖在利什曼原虫诱导的利什曼病期间被病原体识别受体的识别作用。