二imidazolesilver的粉末和单晶样品暴露(我)硝酸盐到60个钴γ射线在77K给出的顺磁中心,其ESR谱是NO的特性2个通过电子增益和银形成的自由基(II由电子形成的)中心失利。没有证据表明在银(II)处电子被捕获,也没有对咪唑配体的任何重大破坏。银(II)中心的esr光谱显示与109 Ag和107 Ag以及两个等效的14 N核的超精细偶联。结果表明,在4 d x内,银的贡献很大2 – y 2轨道,其中x是N–Ag–N方向。除了两个咪唑配体之外,这还确定了配位的硝酸盐配体的存在。
Crystal thin film of bis (imidazole) silver(I) nitrate for all optical switching application
作者:Yali Hu、Tingbin Li
DOI:10.1002/aoc.6060
日期:2021.1
The single crystal of a silvercomplex bis (imidazole) silver(I) nitrate (Ag(C3H4N2)2(NO3), BISN) has been obtained and characterized by X‐ray single‐crystal diffraction. Its crystal thin film was prepared using direct growth on quartz substrates. The surface morphology of the thin film was studied by atomic force microscopy (AFM). The nonlinear optical (NLO) properties of the thin film were investigated
获得了银络合物双(咪唑)硝酸银(I)(Ag(C 3 H 4 N 2)2(NO 3),BISN)的单晶,并通过X射线单晶衍射对其进行了表征。它的晶体薄膜是通过在石英衬底上直接生长制备的。通过原子力显微镜(AFM)研究了薄膜的表面形态。通过使用闭孔Z扫描技术,波长为532 nm的20皮秒(ps)脉冲,研究了薄膜的非线性光学(NLO)特性。使用基于时间的密度泛函理论(TDDFT)和基集LanL2DZ,计算了其线性和NLO性质。
Synthesis, spectroscopy and structural characterization of silver(I) complexes containing unidentate N-donor azole-type ligands
作者:Effendy、Fabio Marchetti、Claudio Pettinari、Riccardo Pettinari、Adriano Pizzabiocca、Brian W. Skelton、Allan H. White
DOI:10.1016/j.ica.2005.10.016
日期:2006.3
From the interaction between azole-type ligands L and AgX (X = NO3 or ClO4) or [AgX(PPh3)(n)] (X = Cl, n = 3; X = MeSO3. n = 2), new ionic mononuclear [Ag(L)(2)]X and [Ag(PPh3)(3)L][X] or neutral mono-([Ag(PPh3)(n)L(X)]) or di-nuclear ([Ag(PPh3)(L)(mu-X)}(2)]) complexes have been obtained which have been characterized through elemental analysis, conductivity measurements, IR, H-1 NMR and, in some cases, also by (31)pH-1} NMR spectroscopy, and single-crystal X-ray studies. Stoichiometries and molecular structures are dependent on the nature of the azole (steric hindrance and basicity), of the counter ion, and on the number of the P-donor ligands in the starting reactants. Solution data are consistent with partial dissociation of the complexes, occurring through breaking of both Ag-N and Ag-P bonds. (c) 2005 Elsevier B.V. All rights reserved.
Perchard, C.; Novak, A., Journal de Chimie Physique et de Physico-Chimie Biologique, 1968, vol. 65, p. 1964 - 1982
作者:Perchard, C.、Novak, A.
DOI:——
日期:——
Effects of the nuclear transformation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>111</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi mathvariant="normal">Ag</mml:mi><mml:mo>(</mml:mo><mml:mi mathvariant="normal">I</mml:mi><mml:mo>)</mml:mo><mml:mn /></mml:math>to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>111</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi mathvariant="normal">Cd</mml:mi><mml:mo>(</mml:mo><mml:mi mathvariant="normal">II</mml:mi><mml:mo>)</mml:mo><mml:mn /></mml:math>in a single crystal of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">Ag</mml:mi><mml:mo>[</mml:mo></mml:mrow><mml:mrow><mml:mn>111</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi mathvariant="normal">Ag</mml:mi><mml:mo>]</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mn /><mml:mo>(</mml:mo><mml:mi mathvariant="normal">imidazole</mml:mi><mml:mo>)</mml:mo><mml:mn /></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">NO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
作者:Bjarne Hansen、Jens T. Bukrinsky、Lars Hemmingsen、Morten J. Bjerrum、Kulwant Singh、Rogert Bauer
DOI:10.1103/physrevb.59.14182
日期:——
Perturbed angular correlation of gamma-ray (PAC) spectroscopy performed on a single crystal of Ag(imidazole)(2)NO3, doped with radioactive Ag-111(I) reveals that one nuclear quadrupole interaction (NQI) characterizes the resulting PAC spectra. This implies a unique coordination geometry for Cd(II) after the decay of Ag-111(I). The full NQI tensor was determined in the experiment. The diagonal elements in the principal-axis system can be derived from the two parameters fitted to the spectrum: omega(0) = \omega(zz)\ = 425.5 +/- 0.1 Mrad/s and eta = \omega(xx) - omega(yy)\/\omega(xx) + omega(yy)\ = 0.240 +/- 0.001. Quantum-mechanical ab initio calculations of the NQI tensor using the known geometry of Ag(imidazole)(2)NO3 substituting Ag(I) with Cd(II) at the position of Ag(I) do not agree a ith the experimentally derived NQI tensor. The coordination number is two for Ag(I) in Ag(imidazole)(2)NO3, which is an unusual coordination number for Cd(II). The Cd(II) ion was therefore moved towards the NO3- anion in the ab initio calculations, in an attempt to include the two oxygen atoms of the nitrate ion in the coordination sphere. This resulted in a four coordinated structure with reasonable Cd(II)-ligand bond lengths. The ab initio calculations based upon this geometry agrees well with the experimentally determined NQI tensor.