Preparation of 14,15-secoestra-1,3,5(10)-trien-15-ynes, inhibitors of estradiol dehydrogenase
摘要:
The conversion of estrone to 14,15-secoestratrien-15-ynes, inactivators of estradiol dehydrogenase from human term placenta, is described. The optically pure precursor 7-acetoxy-octahydro-2-phenanthrenecarboxylic acid methyl ester is prepared from estrone in five steps and 40% yield. The unsubstituted propargylic secoestratriene diol, a mechanism-based inactivator of estradiol dehydrogenase, and the corresponding acetylenic ketone, an affinity label inactivator of the same enzyme, arise from the phenanthrene ester in three and four steps. The propargylic secoestratriene diol also competes with [3H]estradiol for binding to calf uterus estrogen receptor and possesses weak uterotrophic activity.
Preparation of 14,15-secoestra-1,3,5(10)-trien-15-ynes, inhibitors of estradiol dehydrogenase
摘要:
The conversion of estrone to 14,15-secoestratrien-15-ynes, inactivators of estradiol dehydrogenase from human term placenta, is described. The optically pure precursor 7-acetoxy-octahydro-2-phenanthrenecarboxylic acid methyl ester is prepared from estrone in five steps and 40% yield. The unsubstituted propargylic secoestratriene diol, a mechanism-based inactivator of estradiol dehydrogenase, and the corresponding acetylenic ketone, an affinity label inactivator of the same enzyme, arise from the phenanthrene ester in three and four steps. The propargylic secoestratriene diol also competes with [3H]estradiol for binding to calf uterus estrogen receptor and possesses weak uterotrophic activity.
The invention as disclosed provides a method to increase bone mass without compromising bone strength or quality, through the administration to a host of a compound that binds to the estrogen or androgen receptor without causing hormonal transcriptional activation.