Anti-mutagenic structural modification by fluorine-substitution in highly mutagenic 4-methylquinoline derivatives
作者:Taka-aki Kato、Atsushi Hakura、Takaharu Mizutani、Ken-ichi Saeki
DOI:10.1016/s1383-5718(99)00226-0
日期:2000.2
We have previously shown that fluorine-substitution at position 3 of quinoline deprived this molecule of mutagenicity, possibly due to interference with the yield of its metabolically activated form, the 1,4-hydrated 2,3-epoxide (enamine epoxide), which is directly responsible for the mutagenic modification of DNA. To further explore the possibility of a method for anti-mutagenic modification of mutagens by fluorine-substitution, 4-methylquinoline (4-MeQ), the most mutagenic form of all the quinoline derivatives examined so far, was used as a target in the present study. Five mono- and di-fluorinated derivatives of 4-MeQ, 2-fluoro-4-methylquinoline (2-F-3-MeQ), 6-F-4-MeQ, 7-F-4-MeQ, 2,6-difluoro-4-methylquinoline (2,6-diF-4-MeQ), and 2,7-diF-4-MeQ, were subjected to analysis of their structure-mutagenicity relationships. The 2-fluorinated derivatives (2-F-4-MeQ, 2,6-diF-4-MeQ, and 2,7-diF-4-MeQ) were all non-mutagenic In the Ames test. 7-F-4-MeQ was as highly mutagenic as, and 6-F-4-MeQ was less mutagenic than non-fluorinated 4-MeQ. Metabolic studies were also conducted with 4-MeQ, 2-F-4-MeQ, 6-F-4-MeQ, and 7-F-4-MeQ, using a liver microsomal enzyme fraction prepared from the 3-methylcholanthrene-treated rat. The HPLC analytical data showed that, although the metabolic patterns (hydroxylation at 4-methyl group as a main metabolic pathway and 3-hydroxylation as a minor pathway) of these four F-MeQs were similar to one another, only the 3-hydroxy metabolite of 2-F-4-MeQ was not produced under the present experimental conditions employed. These results suggest that fluorine-substitution at position 2 of 4-MeQ inhibited the formation of the enamine epoxide in the pyridine moiety and deprived this molecule of mutagenicity as in the case of quinoline. (C) 2000 Elsevier Science B.V. All rights reserved.