Enantiomeric Propanolamines as selective N-Methyl-d-aspartate 2B Receptor Antagonists
摘要:
Enantiomeric propanolamines have been identified as a new class of NR2B-selective NMDA receptor antagonists. The most effective agents are biaryl structures, synthesized in six steps with overall yields ranging from 11-64%. The compounds are potent and selective inhibitors of NR2B-containing recombinant NMDA receptors with IC50 values between 30-100 nM. Potency is strongly controlled by substitution on both rings and the centrally located amine nitrogen. SAR analysis suggests that well-balanced polarity and chain-length factors provide the greatest inhibitory potency. Structural comparisons based on 3D shape analysis and electrostatic complementarity support this conclusion. The antagonists are neuroprotective in both in vitro and in vivo models of ischemic cell death. In addition, some compounds exhibit anticonvulsant properties. Unlike earlier generation NMDA receptor antagonists and some NR2B-selective antagonists, the present series of propanolamines does not cause increased locomotion in rodents. Thus, the NR2B-selective antagonists exhibit a range of therapeutically interesting properties.
DOI:
10.1021/jm8002153
作为产物:
描述:
(S)-2-((2-硝基苯氧基)甲基)环氧乙烷 、 3,4-二氯苯乙胺 在
ethylacetate-petroleum ether 作用下,
以
乙醇 为溶剂,
反应 12.0h,
以to give the product (1.02 g, 99% yield, m.p. 73-74° C.) as a white solid的产率得到(S)-1-(2-nitrophenoxy)-3-(3,4-dichlorophenylethylamino)-2-propanol
NMDA receptor blockers, including pH-sensitive NMDA receptor blockers, are provided as neuroprotective drugs that are useful in stroke, traumatic brain injury, epilepsy, and other neurologic events that involve acidification of brain or spinal cord tissue. Compositions and methods of this invention are used for treating neurodegeneration resulting from NMDA receptor activation. The compounds described herein have enhanced activity in brain tissue having lower-than normal pH due to pathological conditions such as hypoxia resulting from stroke, traumatic brain injury, global ischemia tat may occur during cardiac surgery, hypoxia tat may occur following cessation of breathing, pre-eclampsia, spinal cord trauma, epilepsy, chronic pain, vascular dementia and glioma tumors. Compounds described herein are also useful in preventing neurodegeneration in patients with Parkinson's Alzheimer's, Huntington's chorea, ALS, and other neurodegenerative conditions known to the art to be responsive to treatment using NMDA receptor blockers. Preferably the compounds provided herein are allosteric NMDA inhibitors.
NMDA receptor blockers, including pH-sensitive NMDA receptor blockers, are provided as neuroprotective drugs that are useful in stroke, traumatic brain injury, epilepsy, and other neurologic events that involve acidification of brain or spinal cord tissue. Compositions and methods of this invention are used for treating neurodegeneration resulting from NMDA receptor activation. The compounds described herein have enhanced activity in brain tissue having lower-than normal pH due to pathological conditions such as hypoxia resulting from stroke, traumatic brain injury, global ischemia that may occur during cardiac surgery, hypoxia that may occur following cessation of breathing, pre-eclampsia, spinal cord trauma, epilepsy, chronic pain, vascular dementia and glioma tumors. Compounds described herein are also useful in preventing neurodegeneration in patients with Parkinson's Alzheimer's, Huntington's chorea, ALS, and other neurodegenerative conditions known to the art to be responsive to treatment using NMDA receptor blockers. Preferably the compounds provided herein are allosteric NMDA inhibitors.